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Abstract 
 
Denial-of-service attacks are an increasing problem in today’s networks. Embedded security 
systems are required as purely software defences are unable to cope with packet rates on high-
speed networks. Reconfigurable logic is well suited to the changing nature of the threat. This 
paper introduces a packet-scanning structure that can be applied to a range of development 
boards and target systems. Multiple clock domains allow the network interface to be de-
coupled from the security logic. The design has been accomplished through hardware 
compilation on a platform FPGA, a method appropriate to quickly matching changing threats. 
Automatic re-timing offers a way to optimize clock widths. Results show that this is a 
scalable solution.  
  
 
1. Introduction 
 
Embedded network security systems are on the increase as purely software approaches cannot 
cope with existing packet throughputs, let alone high-performance LANs such as Gb 
Ethernet. For example, Sourcefire Inc., well known for Snort --- a rule-based software search 
engine, have turned to an intrusion detection system (IDS) using up to ten G5 PowerPC 
processors [1] aimed at fibre-optic line-rates of 2--8 Gbps. SourceFire prefer not to use an 
ASIC, because these are not adaptable to new exploits. In this paper, we consider a look-up-
table-based (SRAM) FPGA [2], which is reconfigurable but supports greater throughput than 
a RISC, as it does not suffer from the fetch-execute bottleneck and can process multiple 
parallel streams according to need. As a comparison, the AES encryption algorithm runs at 
1.5 Gbps on a Pentium 4 (3.2 GHz) [3], at 12.2 Gbps on a Virtex XCV1000 FPGA [4], and 
25.6 Gbps on an Amphion at 200 MHz clock speed [5]. Hardware security devices also bring 
reduced vulnerability to attacks against the device itself (from software afflictions such as 
virus, worms, and executable content) and can act as an insulating layer around a PC and its 
data.  
 
The packet scanner considered herein provides passive defence at a home or campus PC. It 
could also be deployed as a boundary device, though with the growth in campus and 
corporate VLANs, active intrusion detection is preferred to firewall protection. Packet 
scanning also has a role in protection of routers in the network core, for example against 
Border Gateway Protocol (BGP) exploits. Packet scanning also differs from firewall 
protection [6] in that it can act against the packet payload and that stateful filters can be 
implemented, i.e. filters that are responsive to patterns of activity over time. Providing a 
timely response to threats is an important feature of an embedded security system, which is 
not simply a function of which hardware is applied to the task, but also depends on the ability 
to write/design the appropriate response. In turn, this depends on the design environment and 
a packet scanner system structure that will enable easy modification. 
 
Packet scanners work in reactive mode, acting to thwart newly discovered exploits. Therefore, 
a hardware system should also be able to quickly adjust its response. Reconfigurable 
hardware in the form of a SRAM FPGA is well suited to this task but only if it is also possible 
to quickly re-program the array.  Fortunately, from the point that a netlist of logic components 
and their interconnections is available, the process of place-and-route is largely automated, 



unless optimised designs are required. There are three higher-level ways to arrive at a netlist: 
1) by means of a hardware description language (HDL) [7]; 2) through a silicon compiler [8]; 
or 3) using a hardware compiler [9]. HDLs have the disadvantage that compilation times for 
large designs are lengthy [10], slowing down design iterations, though the range of associated 
tools allows low-level optimisations. A silicon compiler gives a succinct circuit description, 
often in an existing software language, e.g. [11]. A hardware compiler, as used in this design, 
converts a program or more accurately an algorithm into hardware. Hence, a hardware 
compiler exists at a higher level of abstraction allowing faster production of attack detection 
routines at a cost in control of the form of the output circuit. Since platform-FPGAs have 
become available from the two main manufacturers, Xilinx and Altera, gate (or rather slice) 
usage has become less critical, and certainly is not an issue for packet scanning routines (refer 
to Section 6).    
 
Threat response time can also be improved if a pre-existing structure exists into which a 
scanning routine can be slotted. Device driver libraries have become available, such as 
Celoxica’s PAL/PSL library (refer to Section 3.2), to allow an FPGA to interface to Ethernet 
and PCI busses, as well as standard computer peripherals such as RS-233, PS-2 and VGA. 
Network device interfaces are clearly of particular importance for a packet scanner. Beyond 
that a buffering structure is needed that will allow a set of scanning routines to work in 
parallel on one packet, while allowing arriving packets to be stored in a custom data-structure. 
Access to the buffer must be regulated in hardware to prevent over-write. This is a different 
problem to software concurrency control through software semaphores or monitors, as those 
solutions assume virtual concurrency simulated by an operating system scheduler. In this 
paper, we consider the design of a generic buffering structure that will meet the needs of a 
variety of scanning routines.  
 
Suspicious content is identified in a number of ways. Signatures (unique byte sequences) can 
be matched against a packet’s content (either header or payload) or conversely a hash of 
successive segments of a packet’s content is matched against a database of such hashes. The 
signatures or hashes can be stored either in external SRAM banks, in block RAM on the 
FPGA [12] as conventional arrays or as Content-Addressable Memory (CAM). We have 
examined on-chip FPGA CAMs but a memory hierarchy, combining block RAM and SRAM 
[13], is also possible.  Particularly in denial-of-service attacks, it is possible for an exploit to 
extend over a number of packets, requiring stateful filter structures such as counters and 
timers. Again, these can be pre-designed components of a generic structure. There are a 
variety of evaluation and development boards, such as the RC200/300 range from Celoxica 
Ltd, Tarari’s content processor, Xilinx’s ML300, Digilent Inc.’s XUP V2P, along with 
production boards [14], which implies that a structure that will also extend to future boards 
should be sought, not least because it will allow exchange of blocking routines or filters.   
 
The remainder of this paper is organized as follows. Section 2 is a short review of other 
embedded systems for network security. Section 3 describes our FPGA design environment. 
We have used hardware compilation rather than a traditional hardware description language 
(HDL) such as VHDL or Verilog. Hardware compilation may allow a more direct translation 
from software algorithm description to hardware circuitry, which is more appropriate when a 
rapid response to a network threat is required. Section 4 is analysis of the type of denial-of-
service attacks that embedded network systems are suited to. Section 5 is an analysis of our 
prototype design and Section 6 gives some preliminary results. Finally, Section 7 draws some 
conclusions and considers future research. 
 
2. Related work 
 
One category of software packet scanner, Dragon, Bro [15] and Snort [16], rely on exact 
string matching to locate offending packets. In an early Snort v. 1.6.3 implementation, Boyer-
Moore algorithm was applied sequentially to each string, leading to an inefficient search [17]. 



(In the Boyer-Moore algorithm, a window is passed over the data, and a match is sought by 
searching backwards within the window.) In fact, some hackers purportedly sent worst-case 
data to befuddle search engines. Since then there have been improvements [18] including the 
use of the Aho-Corasick algorithm to search simultaneously for multiple strings. However, as 
tests confirm [19], most software IDS are insufficient at Gb Ethernet rates. In fact, Snort was 
originally developed for “small, lightly-utilized networks” [16], but unlike some other 
commercial products appears in open source form. 
 
There are at least five approaches to hardware string matching [20]: 1) String matching as in 
the software approach; 2) non-deterministic finite automata (NFA); 3) comparators; 4) 
hashing, which involves approximate matching and, hence, can lead to false positives; 5) 
combinations of the others. The following designs were all implemented on Virtex FPGA. In 
[21] using approach 1), the well-known Knuth-Morris-Pratt (KMP) algorithm is employed to 
search a character at a time, matching by comparators. The main advantage of the KMP is 
said to be the ability to scale more readily, i.e. apply multiple rules by repeated application of 
the KMP, i.e. through pipelining. Approach 2) is applied in [22] to regular expressions. In 
[23], approach 3 is applied. Characters from a single packet are fanned out to a set of 
comparators, which is similar to the operation of a CAM. a CAM. In [12], approach 4) is 
applied.  A Bloom filter is employed to match multiple strings at the same time. For each 
string, multiple hash functions are applied, each function outputting one value from a finite 
set of values. The resulting bit pattern vector acts as the search string. Bloom filter matching 
only identifies candidate threats, implying that a further exact match is required if false 
matches are to be avoided. In [12], multiple Bloom filters are applied in parallel to the same 
packet. This implies that variable length IP packets must be buffered. Thus, higher memory 
usage is a disadvantage of this approach. A similar comment applies to the packet-wise 
parallelism applied in [23], in which a dispatcher places an arriving packet in one of four 
implemented content-scanners (regular expressions). On the other hand, logic usage grows 
according to the number of characters in character-based approaches, whereas this is not the 
case for hashing methods. 
 
Choice of search algorithm is to some degree interchangeable, whereas it is less easy to alter 
the system architecture. In our initial work we have employed a flexible approach, able to 
adapt to a variety of algorithms and adjust its pace to the packet arrival rate. This implies 
packet-oriented rather than character-oriented parallelism, as only then can packets be 
buffered if there is a delay in processing a previous packet. A single packet can be scanned 
for multiple rules or multiple packets can be processed in parallel for different (or the same) 
rules. 
 
3. Development environment 
 
As outlined in Section 1, we seek a design environment that can enable a rapid response to 
new threats. 
 
3.1 Hardware compilation 
 
Handel-C [24] is a hardware compiler, which attempts to model a programming language in 
hardware, and outputs a netlist compatible with FPGA place-and-route tools. Software 
approaches to hardware [25] allow software to be readily ported to hardware or software to be 
synthesized from existing hardware designs. Based on ANSI-C, Handel-C adds extra features 
required for hardware development. These include flexible data widths, parallel processing 
and communication by channels between parallel threads. In Handel-C: 
 
• Within a single clock domain, execution is clock synchronous. 
• Assignment statements each require 1 clock cycle. 



• Expression evaluation takes zero clock cycles, but results in propagation delay through 
corresponding combinational logic. Complex expressions will lead to long propagation 
delay, lowering the maximum clock speed. This will reduce the overall speed of the circuit. 

 
Though the Handel-C model is clock synchronous, the channel primitive allows synchronized 
communication between parallel processes by means of a rendezvous. The channel allows the 
designer to neglect detailed timing issues when first preparing a design.   
 
By means of multiple “main” blocks with associated clock statements, Handel-C supports 
multiple clock domains in the Xilinx Virtex series (from Virtex II). Communication across 
domains is through a shared buffer, which feature is built in to the design of Section 4. The 
channel is the only way for processes to communicate between two clock domains. In some 
designs, the application logic is slower than memory access. Therefore, data are assembled in 
several cycles [26] while an application completes. The clock speed of the I/O libraries in this 
design is restricted to 100 MHz and below, while the simpler application logic can run at 
faster speeds given a decoupled design. 
 
Refinement of Handel-C programs is normally based on trial and error, as, though heuristics 
exist, there appears to be no direct relationship between making a change and a resulting 
improvement to the clock rate. As placement takes place automatically, propagation delays 
are not visible.  
 
However, as hardware compilation is software oriented it allows a more direct translation of 
algorithms into hardware. Given that network threats can arise quickly, this programmatic 
way of design may allow quicker responses, provided there is a generic structure available.   
 
3.2 Integrated Development Environment (IDE) 
 
The Celoxica DK IDE, built around Handel-C, has the “look-and-feel” of MS Visual Studio. 
It incorporates a clock-accurate simulator. In DK, the user can choose to run simulation 
without any hardware, or generate the output in a standard Electronic Design Interchange 
Format (EDIF) netlist. (RTL VHDL output is also possible.) The ability to automatically re-
time designs (introduce registers to decouple logic thus optimising timing) is an interesting 
improvement (see Section 3.1) supported in DK version 3. In some cases, timed logic can 
replace channels. We experimented with re-timing in our implementation. 
 
The main feature utilised in the packet scanner design are the device driver libraries. The 
Platform Developer’s Kit (PDK) consists of three elements: the Data Stream Manager (DSM), 
the Platform Abstraction Layer (PAL) and the Platform Support Library (PSL) [27]. Only the 
latter two are used in the design. PAL is a thin wrapper layer around PSL, and hence we 
found no speed advantage from using PSL directly. PSL is a device specific layer, which is 
extensible. Figure 1 shows the relationship between the libraries. 
 
3.3 Development board 
 
The RC200 development board from Celoxica Ltd. was used to develop the structure. The 
principal features employed in the design were: Xilinx XC2V1000-4 Virtex-II FPGA [28]; 2 
banks of ZBT SRAM providing a total of 4 MB; a CPLD for configuration/reconfiguration; 
an Ethernet MAC/PHY with 10/100 base-T socket; parallel port for bit-file download; and 
RS-232 serial port.  
 
The RC300 board, which was released after this work commenced, provides two Gb Ethernet 
interfaces, making it more suitable for applications of this sort, as the packet stream can be 
released onto the Ethernet segment, rather than unrealistically outputting to a terminal 
window on the PC via the RS-232 interface. The Tarari Content Processor [29], incorporating 



three Virtex II FPGAs, is custom-designed for packet content scanning. It uses a PCI bus 
rather than an Ethernet interface and dedicated FPGAs for input and output, allowing high 
throughput. However, it requires a double-width 64-bit, 66 MHz PCI bus, normally only 
present on multiprocessor PC servers.  
 
The Virtex II FPGA, if used without modification, may not be ideal for security applications 
as the Xilinx’s Jbits software tool [30] allows selective examination of the reconfiguration 
bitstream through the JTAG interface.  However, Xilinx now provides bitstream encryption 
[31], though reconfiguration latency is increased. A triple-DES algorithm is applied, while 
two keys are stored in a small, battery-powered portion of on-chip memory.                                 
However, readback of the bitstream is not as potent a threat to packet scanners as it is to 
FPGA cryptographic devices for which keys or possibly algorithms are at risk. The main 
threat to scanners is probably a commercial one, as an FPGA is a standard part. An extensive 
survey of reverse-engineering attacks on FPGAs appears in [32].                                                   
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Figure 1: Relationship between application code and device driver libraries (after [27]) 
 
4. Fragmentation attack 
 
Of the many different areas in network security suitable for a hardware solution, Internet 
Protocol (IP) (the main packet routing protocol) fragmentation was chosen as an example for 
these reasons: it is a network layer issue, which is simpler to tackle than complex transport 
protocols; the next generation IP version 6 (IPv6) also supports IP fragmentation; and in [33] 
the authors discovered that around 0.5% of the total traffic are fragmented packets. Although 
the relative volume of fragmented traffic is not high (though in absolute terms is 
considerable), it is quite common to have fragmented packets flowing around the networks.   
 
As the maximum transport unit (MTU) can vary across a network path due to buffer sizes or 
data-link layer protocols, fragmentation allows a packet to be broken up into packets that fit 
within an MTU. The IP fragmentation mechanism is recursively applied at routers, with 
packet reassembly normally taking place at the end node. In [34] it is suggested that the 
disadvantages of IP fragmentation outweigh its advantages, and MTU discovery is an 
alternative. In [35], the authors offers some alternative remedies, as in some circumstances 
fragmentation can improve network performance. In security terms, IP fragmentation seems 



to offer no advantages and only acts as a complication to other packet filtering. As transport-
layer protocol headers are only contained in the first fragment (except in the aberration 
discussed in Section 4.1) packet filters may only process the first fragment and route the rest 
(assuming that as they cannot be reassembled they will do no harm). Other packet filters 
cache recent first fragments and the decision applied and re-apply the decision to succeeding 
fragments. This diversity and complication offers a threat to the successful application of a 
security policy.  However, as fragmentation is widely deployed fragmentation attacks remain 
a threat.  
 
T
 

he basic rules for IP fragmentation are: 

1. All fragments must use the identification number of the original packet.  

2. Each fragment must specify its offset in the original un-fragmented packet. 

3. Each fragment must carry the length of the data carried in the fragment (minimum 8 

B). 

4. Each fragment must know whether there are more fragments after it. 

A router accomplishes rules 1—3 by setting fields in the IP header. Rule 4 is accomplished by 
setting (or unsetting) a ‘more fragments’ flag within the flags field. The setting of individual 
flags is not reported by the libpcap library, which on Linux systems underlies some IDS, 
preventing setting rules to detect this type of exploit.   
 

There are various kinds of IP fragmentation exploits; for a list, refer to [36]. However, many 
of these exploits first appeared some time ago and most operating systems and firewall 
software have addressed them with patches and upgrades. However, as fragmentation is 
widely deployed fragmentation attacks remain a threat, with the Rose attack [37] emerging in 
early 2004.  Furthermore, the choice of IP fragmentation prevention is only as an example to 
demonstrate the idea of using reconfigurable hardware for network security.  
 
4.1 Tiny Overlapping Fragment Attack  
 
The Tiny Overlapping Fragment Attack is a combination of the “Tiny Fragment Attack” and 
the “Overlapping Fragment Attack” [38]. The target of these attacks is mainly Internet 
firewalls and the aim is to bypass firewall filtering. 
 
In the Tiny Fragment Attack, the first fragment contains only the first eight bytes of the IP 
payload. In the case of TCP, this is actually the source and destination port numbers. The rest 
of the TCP header (most importantly the TCP flags field) will be stored in the second 
fragment. As a result, the firewall will not be able to test the TCP flags, and a harmful Telnet 
session could be established. 
 
The Overlapping Fragment Attack exploits flaws in the reassembly algorithms. Two 
fragments are generated with overlapping offsets. The first one is legitimate, while the second 
one contains malicious information. Since the firewall only checks the first fragment, the two 
fragments will arrive at the destination. The first one will, however, be overwritten by the 
second one during reassemble to produce a malicious packet.  
 

The Tiny Overlapping Fragment Attack is an enhanced version of the two attacks mentioned 
above. It consists of sending three fragments. However, the attack has a simple 
countermeasure in the form of two rules catching fragment offsets of zero or one [39], which 
is easily implemented in hardware. Strangely, this implies that one point where a hardware 
device would be placed would be to protect a firewall. 



 
4.2 The Rose Attack 
 
The Rose Attack’s idea is very simple, the first fragment and the last fragment of a very large 
packet (64 KB) are sent, but not the middle fragments. The fragment buffer in the IP stack is 
held open for a certain period of time (That time for Microsoft Windows XP is 1 minute and 
Debian Linux is 30 s). If there are enough fragment pairs to fill the fragment buffer, no more 
fragmented packets are accepted. The attack is made effective by sending SYN packets, used 
to make an initial connection. This fragmentation exploit is one of a number which are denial 
of service attack, as they work to disable the re-assembler by causing it to reserve too much 
memory or computation time in the expectation of further fragments that never arrive. As 
some firewalls reassemble fragments there is again a threat to firewalls. 
 
Alarmingly the author of this attack [37] describes how to set up a number of machines to 
generate a stream of fragments, spoofing addresses to prevent disablement of the offenders. 

he following effects of this exploit are stated: T
 

• It causes the CPU to spike, thus exhausting processor resources.  
• Legitimate fragmented packets are dropped intermittently. 
• The machine under attack no longer accepts legitimate fragmented packets (un-

fragmented packets do not experience adverse effects) until the fragmentation ‘time 
exceeded’ timers expire. 

• Buffer overflow can occur on intermediate routers, i.e. packets are dropped at high 
packet rates if there are not sufficient buffers allocated. 

 
5.   Packet Scanner Framework 
 
This aim of the packet scanner structure is to simplify the development of packet inspection 
processes on an FPGA. It is achieved by the separation of the network interface from the 
packet operations. The packet scanner has been implemented using Handel-C on the RC200 
development board (Xilinx Virtex-II XC2V1000 FPGA), as described in Sections 3.1—3.2. A 
unctional block diagram of the structure is shown in Figure 2.  f
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Figure 2: Functional Block Diagram of the Structure 
 
A received packet comes in from the left. The Ethernet Interface is implemented by means of 
the PSL library (Section 3.2). Packets are read from the network and passed to the “Writer”, 
which then writes the packet (IP header in our example) into the 2 ×  256 bit shared buffer. 
The shared buffer is implemented using Virtex-II dual-port block RAMs. The following code 
shows the structure of the shared buffer. 
 



 
// Structure of the Multi-ported RAM 
mpram SharedBuffer 
{ 
 rom unsigned 256 Read[1]; // Read Only Port 
 wom unsigned 8 Write[32]; // Write Only Port 
};  
 
mpram SharedBuffer Queue[MAX_QUEUE_SIZE] with {block = "BlockRAM"};  

 
On the other side, the “Reader” reads the IP header from the shared buffer and passes it to the 
“Process Manager”. A Handel-C channel (Section 3.1) is used together with the buffer to 
implement a safe FIFO queue. Since the “Reader” needs only one clock cycle to copy the data 
from the buffer, there will be not any mutual exclusion problem in the design. (i.e. the 
“Writer” will not write into the location the “Reader” is currently reading. )  By using a 
channel, exclusion problems are essentially packaged in the channel construct. The alternative 
to a channel, Handel-C’s semaphore, does not work across different clock domains. The 
implementation of the semaphore, unlike the channel, described in earlier research papers 
[40], also appears opaque, perhaps via Handel-C’s priority alternation construct or through a 
priority buffer or through a semaphore management process. In [40], a channel is 
implemented by two handshaking lines, ‘ready’ and ‘transfer’. The ‘ready’ line is asserted, 
through an OR gate, whenever any statement is ready to input and similarly the ‘transfer’ is 
asserted, through an OR gate, whenever a statement (in another process) is ready to output. 
The ‘ready’ and ‘transfer’ signals are ANDed together to create a ‘reg_load’ signal, which 
enables loading of a register to complete the transfer (and resets the channel for 
communication). The compiler checks that there is only one input and output statement that 
can communicate over a channel at any one time. Through use of handshaking, a channel is 
able to communicate across clock domains. 
 
Reading a packet is illustrated in the following code. The code illustrates data width control, 
use of pointers in macro-calls, and the par construct, allowing nested parallelism. With the 
par constructs removed porting from ‘C’ and vice versa is a simple matter. EthernetRead 
is a macro written by us to call PSL library functions. Apart from macros each assignment 
takes one clock cycle to execute (though this may be in parallel) and all other statements take 
zero clock cycles. Notice the delay statements after each if. If omitted these may reduce 
the clock speed dramatically, as the logic depth increases. (This is reminiscent of the parallel 
language occam, from which Handel-C semantics are derived and which required a skip 
statement in place of the delay statement in Handel-C.) 
 
void ReadPacket() 
{ 
unsigned 1  Error, Done;  
unsigned 16 Type; 
unsigned 48 Dest, Src; 
unsigned 11 Length; 
unsigned 5  Counter; 
unsigned 8  Data; 
unsigned 8  Temp[20]; 

 
par 
{ 

// Attempt to Read Packet 
EthernetReadBegin(&Type, &Dest, &Src, &Length, &Error); 
Counter = 0; 
Done = 0; 

} 
  
  // If read was successful, read the packet data (IP Header) 
  if ( Error == 0 ) 
{ 

// Process Ethernet Type 0x0800 only 
EthernetRead(&Data, &Error); 
if ( Data == 0x08) 
{ 



EthernetRead(&Data, &Error); 
if ( Data == 0x00 ) 
{ 

do 
{ 

EthernetRead(&Data, &Error); 
 
par  
{  

// Store the 20 Byte IP Header 
WriteBuffer1(Data, Counter); 
Done = ( Counter == 19 ); 
Counter++; 

} 
} while ( !Done ); 

} 
} 

   
par 
{ 

EthernetReadEnd( &Error ); 
SignalReader1(); 

} 
 } 

   else 
   {  

delay; 
} 

} 

 
The “Process Manager” controls the different processes working on the header. Here is a code 
segment of an example process which checks for fragmentation threats. The code executes in 
one clock cycle, as the ‘if’ statements are all in parallel (and the nested par statements also 
all operate in parallel). 
 
void FragmentProcess() 
{ 
par 
{ 
// Rule 1 
if ( (header.ip_p == 6) && (header.ip_off == 0) && (header.ip_len < 40) ) 
Pro1 = 1;   // Rule 1 is matched 

else  
delay; 
 

// Rule 2 
if ( (header.ip_p == 6) && (header.ip_off == 1) ) 
Pro2 = 1;   // Rule 2 is matched 

else  
delay; 

 
// Rule 3 
if ( (header.ip_off != 0) || header.ip_flg ) 
{ 
par 
{ 
Count[sec]++;   // Update Number of hits in this second 
TotalHit++;   // Update Total hits 
Pro3 = 1;   // Rule 3 is matched 
if (TotalHit > MAX_ALLOWED) // Drop Packet if exceeds limit 
Drop++; 

else 
delay; 

} 
} 
else  
delay; 

} 
} 

The advantages of this design are as follows. Firstly, parallelism can be achieved between 
processes and within a process, and therefore throughput of the system is increased. Secondly, 
process design and implementation is independent of the network interface and buffer 



management, which can be different on every development board. Moreover, thirdly, the use 
of a shared buffer not only allows pipelined reading from and writing to buffers, but it also 
provides another option to increase the throughput of the system by dividing the FPGA into 
two clock domains. The block diagram is shown in Figure 3. The reason for having two clock 
domains is because the network interface circuitry restricts the clock speed of the network 
interface. However, processes do not have such restriction since they are ‘pure logic’. By 
splitting the FPGA into two clock domains, throughput is further increased. 
 

                                    Figure 3: Structure divided into two clock domains 
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In the event of dual Ethernet interfaces, three clock domains are more appropriate. As 
previously remarked, on the RC300 board it was necessary to output test results elsewhere, in 
our case via an RS232 serial link to the PC system. This also requires three clock domains 
and the revised design shown in Figure 4.   
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Figure 4: Structure divided into three clock domains 
 
 



 
6. Results 
 
In order to test the structure of Figure 2, with a single clock domain, an example of a process 
was needed. In this case, a single process tackling the IP fragmentation threat was 
implemented. It checks for certain patterns inside the header and counts the number of 
occurrences of fragmented packets in a period of time. This process takes one clock cycle to 
finish its operation.  
Since the whole structure is implemented using the Handel-C PSL library, there are some 
constraints that must be matched. The fastest achievable clock rate for the Ethernet interface 
library code is 100 MHz. However, the maximum frequency achievable on RC200 is 300 
MHz. The “Ethernet Interface” is potentially the bottleneck of the system, not only because 
there is a restriction of clock frequency but also because the number of clock cycles is also 
proportional to the size of the packet. 
 
The resource usage of the structure is listed in Table 1. It runs at approximately 50 MHz, as 
buffering and calling the library code reduces the speed. All the processes used are identical, 
which is the FragmentProcess() of Section 5. 
 

Number of Virtex-II slices 
No Process 1 Process 10 Processes 

501 out of 5,120 
(9%) 

564 out of 5,120 
 (11%) 

581 out of 5,120 
   (11%) 

Table 1: Resource usage of the one clock domain structure 
 
As only 11% of the Virtex-II device was needed for 10 processes, the indication is that it is 
possible to implement many more processes on the FPGA, which is obviously desirable in 
order to reduce the cost of deployment. 
 
We also implemented the three-clock domain of Figure 4. To implement multiple clock 
domains, each domain is assigned a clock and a “main” function. The following code is the 
top-level control structure for the three domains: 
 
// Clock Domain 1 
#define RC200_TARGET_CLOCK_RATE 50000000  // 50 MHz 
void main( void ) 
{ 

// Run Ethernet in parallel with other code 
par 
{ 

// Runs the device management tasks for the Ethernet interface 
EthernetRun( ClockRate1, 0x12345678dead ); 
InitBuffer1();  // Initialize Shared Bufer 1 
 
seq 
{ 

// Specifies initialization settings for Ethernet interface. 
EthernetEnable( RC200EthernetModeDefault ); 
// Run the ReadPacket macro forever  
while ( 1 ) 

ReadPacket();     
} 

}   
} 
// Clock Domain 2 
#define RC200_TARGET_CLOCK_RATE 100000000  // 100 MHz 
void main( void ) 
{  

par 
{   

RealTimeClock(); // Run the Real Time Clock 
InitBuffer2();  // Initialize Shared Buffer 2 
seq 



{ 
InitCounter(); 
// Run the ReadBuffer1 macro forever    
while ( 1 ) 

   ReadBuffer1();   
} 

}   
} 
// Clock Domain 3 
#define RC200_TARGET_CLOCK_RATE 50000000  // 50 MHz 
void main( void ) 
{ 

// Run the RS232 in parallel with other code  
par 
{ 

// Run RS232 controller 
RS232Init(RC200RS232_115200Baud, RC200RS232ParityNone, 
   RC200RS232FlowControlNone, ClockRate3); 
seq 
{ 

// Run the ReadPacket macro forever    
while ( 1 ) 

ReadBuffer2(); 
} 

    }   
} 

 
In the implementation, clock domain 1 and 3 easily run at about 50 MHz.  However, the 
‘Buffer Writer’ in clock domain 1 takes at least forty clock cycles (number of bytes extracted 
for the IP header, 2 cycles per-byte) to load the buffer, whereas the ‘Buffer Reader’ takes one 
cycle in domain 2. Only one process has been implemented, which has two functions: 1) 
check for a “Tiny-Overlapping Fragment Attack” (Section 4.1) and 2) Count the number of 
fragmented packet received in the last 60 seconds. This process takes one cycle to operate (as 
mentioned in Section 5). The place-and-route algorithm depends on an initial estimate of the 
clock width (as specified within the Handel-C code) to reach its actual clock width.  
Automatic retiming (Section 3.2) was found to offer a small reduction in the clock width for 
clock domain 2, traded-off against a small increase in slice usage. Table 2 presents the results, 
showing an example of retiming. Note that Table 2 is a snapshot, as optimizations to the code 
may result in small variations in clock speed. When retiming was applied (after compilation 
but before output of the final netlist and place-and-route), the clock speed increased from 89.0 
MHz to 91.4 MHz. However, DK’s technology mapping (at the same stage in processing) 
also produced an improvement from 79.3 MHz to 89.1 MHz. Technology mapping can be 
enabled once the specific device is input. 
 

Technology Mapper Retiming Virtex –II slices  Min. Clock width
(domain 2 only) 

No No 692 out of 5,120   (13%) 12.610 ns 
Yes No 698 out of 5,120   (13%) 11.236 ns 

Yes Yes 739 out of 5,120   (14%) 10.936 ns 

Table 2: Resource usage of the three-clock domain structure 
 
6.1 Discussion 
 
Partition of the design into separate clock designs did bring gains in relative clock speed in 
this implementation, as clock domain 2 now is approximately 100 MHz, whereas the same 
code ran at 50 MHz in the one clock domain structure. Partitioning is a useful strategy in 
terms of generic designs with differing I/O interfaces and interface code. Currently, though 
packet throughput would be around 100 M packet/s with a single process, the input interface 
reduces this by a considerable amount. Referring to the packet read code in Section 5, there is 
a minimum of 70 cycles to begin packet processing, while each byte read takes 2 cycles, with 
a further cycle to store in the shared buffer. Two of the bytes are from the Ethernet frame, 



while the remaining 20 transferred to the buffer form the IP header. Finally, to complete takes 
7 cycles. In total, this is 141 cycles at 50 MHz or 2,820 ns. All routers support at least 576 
byte packets (which is between 42 byte TCP/IP minimal packets and 1500 maximal Ethernet 
frames). Thus the maximum throughput is 1.634 Gbit/s, assuming a continuous flow of 
packets, which easily copes with up-and-coming Gb Ethernet Metropolitan network 
backbones.     
 
7. Conclusion 
 
This paper has identified an area, network security, in which embedded systems will 
increasingly be deployed. The paper has also described appropriate design methods intended 
for rapid development of a design. If a pre-existing structure exists then hardware compilation 
is a way of quickly creating a process that will respond to a new threat from tainted packets. 
The structure designed in this paper has three clock domains, de-coupling the network 
interface from the application logic, and the input from output channels. 
 
The paper represents preliminary results. Currently, the shared buffer has been deployed 
against packet headers, which are fixed in width. A weakness of shared buffer approaches 
(see Section 2) in general is that if the data payload is searched then the buffer slots must be 
of variable width. Dividing the payload into equal-sized chunks may solve this problem but 
the approach has still to be verified. Clock timings will be the main determinant of relative 
performance in comparison with the Snort-like software approach described in Section 1.  A 
testing structure has already been constructed so that a stream of packets can be directed 
towards Snort and towards a packet scanner. Of course, this is on an isolated network. In fact, 
testing is not simple, as the software access to the raw socket interface is required to modify 
packet headers. Regulating access to a buffer by limiting the reader to a single clock cycle has 
a potential to increase the clock width if the reader is augmented in any way. Automatic re-
timing offers some help in that respect. Minimizing the application clock domain clock width 
and the running speed is required for long running processes, so as to match packet arrival 
times. Hence, design of embedded systems for network security is a challenging task, which 
brings with it a range of new problems. 
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