
Archive Image Communication with Improved Compression

Xiao Wei Yin, Martin Fleury, and Andy C. Downton
University of Essex

Department of Electronic Systems Engineering
Multimedia Architectures Laboratory

Colchester, Essex, CO4 3SQ, United Kingdom
Tel.: +44 1206 872817
Fax.: +44 1026 872900

{xwyin,fleum,acd}@essex.ac.uk

Abstract

DjVu is a document codec that uses a truncated embed-
ded significance tree to achieve both resolution and image
quality scalability. In this paper, the probability model for
the truncated tree arithmetic coder is improved, resulting
in reduced bit-rates. The trade-off in decoder complexity is
also indicated.

1 Introduction
Archive documents are an important resource for re-

search in areas as diverse as climate change, biodiversity
monitoring, census statistics and economics, where histori-
cal data needs to be compared with modern trends. Whereas
recent data is invariably stored in electronic form, historical
archives generally require conversion from legacy sources
such as card indexes, ledgers or paper files. Central to such
conversion is the need accurately to preserve an original
document image as well as converting the document content
into a suitable electronic database, to preserve parts of the
document which may be omitted from the database or erro-
neously transcribed. In either case, reference to an accurate
facsimile of the original document is essential to recover
missing information.

Increasingly, document database archives are made uni-
versally available via the world-wide web, for which de-
fault browser support for JPEG document images is avail-
able. However JPEG is not an ideal document image for-
mat either in terms of compression efficiency (i.e. down-
load time) or reproduction quality, leading to research inter-
est in improved document image coding algorithms. In our
work on card archives held at the Natural History Museum
in London,1 preservation of all aspects of document archive

1Work was carried out in association with the VIADOCS project, under
BBSRC research contracts 84/BIO11933 and 40/BIO11938.

cards (including the background) is essential, since critical
amendments to the original card data may be made in pencil
and lost during OCR conversion.

2. DjVu and Archive Communication
DjVu is a well-regarded document compression tool

from AT&T, with algorithms detailed in [5], that gains ad-
vantage over JPEG2000 for document compression [3] by
separately encoding background and foreground layers [1].
A third bit-map mask layer indicates to each of the other
layers which pixels are already coded in the other layer (al-
lowing respective coding coefficients to be discounted [1]).
Otherwise, the two codecs are broadly similar: both use
a wavelet transform2; an embedded significance tree; and
a Context Adaptive Binary Arithmetic Coder (CABAC) to
encode the significance tree bitstream, which employs bit-
plane ordering for progressive coding. The embedded sig-
nificance tree provides both resolution and SNR (Signal-
to-Noise Ratio) scalability. DjVu and JPEG2000 are both
more suitable than JPEG for encoding document archives.
However, due to their differing design goals, DjVu is signif-
icantly more efficient for encoding document images. This
paper seeks to further improve DjVu’s efficiency in encod-
ing archive documents, bearing in mind the need to preserve
accurate facsimiles of both the foreground and background
image.

The efficiency of the codec is not the only issue, as mem-
ory usage and coder complexity also enter into the compar-
ison. Within DjVu, wavelet coding proceeds on an image
block basis (called tiles in JPEG2000). Hence memory us-
age is considerably reduced, as only a single tile need be
held in memory at any one time. Tiling has a limited effect
on the overall complexity of the wavelet transform however,

2In DjVu, the wavelet codec, IW44, is not applied to the bi-level mask
image, for which a variant of the fax. encoder, JBIG2, is applied.



as entropy encoding and quantization can form almost 60%
of the total compute time for decoding of high-quality im-
ages. Therefore, this paper also considers the practical im-
pact on complexity of varying entropy encoding.

The application for this work arose from (Section 1) a
legacy card index, and, therefore, tests took place on cards
such as Fig. 1, with segmented background in Fig. 2, pro-
duced by the DjVu public-domain segmentation algorithm.

Figure 1. Card showing typical annotations

Figure 2. Background of Fig. 1

3. Improved Entropic Compression
In [10], it is suggested that the DjVu encoder has ‘a

less efficient embedded representation for each code-block’.
Therefore, it is natural to implement extensions from [10]
to judge possible improvements. DjVu’s IW44 wavelet
encoder employs the dyadic Mallat scheme [7] to orga-
nize a 2-D image filter bank; successively decimating a LL
(Low-pass horizontal, Low-pass vertical) subband to LH (L,
High-pass vertical), HL, and HH subbands.3 1-D localized
wavelet filters are applied in the spatial domain to even and

3The image can be reassembled at increased resolutions by reassem-
bling the corresponding LL, LH, HL, and HH subbands. For simplicity of
presentation, this paper assumes a gray-scale image.

odd row (column) coefficients, or rather their adjacent pre-
dictors are interpolated to reduce entropy [9].

However, like JPEG2000 but unlike earlier wavelet en-
coders operation is on 32 × 32 image code blocks (in
JPEG2000 the block size is larger). Each block employs
the dyadic scheme but IW44 has a further decomposition
into 4 × 4 buckets (hence, the algorithm name) with 1, 4,
and 16 buckets (called ‘precincts’ in JPEG2000) according
to resolution layer. Each block can, therefore, be randomly
selected as a region of interest and formed into a bitstream.
In Fig. 3, there are 10 resolution subbands with 0, 1, 2, and
3 the coarsest, and 7, 8, 9 being the finest. An example
wavelet coefficient in band four is shown as the parent of the
four coefficients in band seven. Selection of coefficients is

3232

0 1

2 3

4

5 6

7

8 9

32

Figure 3. Block decomposition

achieved in IW44 by a generalization [4] of Shapiro’s Em-
bedded Zero Wavelet scheme [6] and others, whereby a sig-
nificance tree is formed. Based on previously decoded in-
formation, a decoder can predict whether a transform coeffi-
cient is likely to be significant. There are two ways to base a
prediction: 1) on values within parent subbands; and 2) on
previously coded (in raster scan order) coefficients within
the same subband. If one bucket within a subband contains
a significant coefficient, then the subband is marked for en-
coding. Therefore, the significance tree is hierarchical, with
the selection scheme in Fig. 3 proceeding from coarse to
fine subband (the reverse of the wavelet transform order-
ing). If an encoding decision is taken then coefficients are
bracketed with a given range (though using dead-zone quan-
tization around zero). Successive IW44 slices encode coef-
ficient significance within successive ranges or bit planes,
thus allowing the user to control the precision or SNR of
the representation by specifying the number of slices.

The significance tree itself is encoded through the IW44
CABAC (the Z’-coder). A binary arithmetic coder [8, 11]
outputs a bit if the embedded decision is not apparent or
no bit if the probability model accurately predicts the deci-
sion. The extent that the previous bitstream code values can
accurately predict the next bit is dependant on context vari-

2



ables. For any one decision a relevant context variable acts
as an index into a probability look-up-table (LUT) within
the statistics module of the coder.4 Thus, the design of the
context model affects the ability to predict, and therefore
whether or not a bit needs be output. In the low-complexity
Z’-coder [2], there are 98 possible context variables per
block arranged in four groups or passes, each pass deter-
mining a binary decision: 1) one variable defines whether
the buckets within a band should be decoded; 2) 8 variables
per 10 bands define whether the coefficients within a bucket
should be decoded. 3) 16 variables define whether each
coefficient’s sign should be decoded and hence its value
(scaled by 1.5) calculated from the quantization step size;
and 4) one variable decides whether the previous scaling is
decreased or increased by 0.5 to renormalize the encoding
interval.

4. Supplementing the Context Variables
A number of context variables have been added to the

model presented in Section 3. In DjVu (unlike JPEG2000),
the significance of coefficients in the same subband is not
taken into account. However, as subband data have been
observed to have a Laplacian distribution [3], then, with at
least one significant coefficient in a bucket, surrounding co-
efficients are likely to be significant. Pass two and three
context variable additions are intended to put back the miss-
ing information, though there will be an effect on complex-
ity. The implementation works by incrementing a pointer
into a supplemented array of context variables, according to
the number of prior neighboring coefficients that are already
significant. In turn, the selected context variable indexes the
probability LUT. An extra 131 context variables are added
in total.

Currently, the decision in pass one on whether a band’s
buckets should be considered for decoding, solely consid-
ers whether it is a root band or its parent was considered
active (with coefficients in range), in which case the band
is marked as ‘new’. In fact, all bands marked as ‘new’ are
automatically considered for bucket decoding in pass two.
The first addition (of three context variables) is also to con-
sider whether three or more of the coefficients in the parent
band were within range (active), in which case, even though
this is a small sample of the available parent coefficients,
there is a high probability that the current band has coeffi-
cients in range, i.e. has decodable buckets.

In pass two, a bucket was only considered for decoding if
coefficients in parent buckets were in range. For the higher-
layer bands (those with more than four buckets), whether a
bucket should be considered for decoding is now made con-
ditional on whether neighboring buckets have been marked
as ‘new’. This doubles the number of context variables for

4This arrangement allows the model to be independent from the rest of
the coder.

this pass. In Fig. 4 for the finest resolution band with 16
buckets, the relevant previously decoded neighbors for each
bucket are indicated. For example, bucket zero has no rele-
vant neighbors, whereas bucket five has three. In pass three,

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

Figure 4. Neighborhood prediction

the decision is equally made depending on whether neigh-
bors are newly in range, according to the same scheme as
pass two. Additionally, after [10] context variables (48 in
all) are now assigned to the sign of a coefficient (quantiza-
tion is on the absolute value), whereas in IW44 no variables
are assigned to the prediction of the sign. In fact, the sign is
likely to be the same as that of neighbors in the horizontal
direction, with nearer neighbors being more closely corre-
lated.

4.1. Results
Several test gray-scale images, a sample card, Fig. 1,

and and its fore- and back-ground images, Fig. 2, together
with the well-known ACM document and Lena images, by
way of illustration have been compressed both by means of
IW44, and by IW44 with additional context variables, to get
a revised file size, as recorded in Table 1. Also included, is a
card, Fig. 5, with more than typical penciled-in annotations.
For each image, the IW44 file size was progressively in-
creased by selecting a larger number of slices, consequently
achieving a larger PSNR (Peak SNR). Though the PSNR
is unchanged, the transmitted file size reduces in virtually
all cases by the addition of the extra context variables. In
other words, for the same PSNR the file size improvement
is given in Table 1. Comparing for similar file sizes5, for
a typical compression of Fig. 1, file size 10k and 9.9k, for
IW44 and revised IW44 respectively, the PSNR improves
from 33.50 dB to 34.02 dB, a 1.6% improvement.

File size reduction is greatest for the smallest number of
slices and PSNR (greatest distortion compared to the orig-
inal image). The technique favors documents over natu-

5As the unit of DjVu file size quantization is a slice or subband stream,
equal file sizes can only be approximated.

3



IW44 file Revised file PSNR Improve-
size size ment
Complete card image, Fig. 1, 756× 456 pixels

5.42k 5.05k 30.59 6.82%
9.40k 8.89k 32.89 5.85%
16.2k 15.6k 37.21 3.70%
36.3k 35.5k 44.38 2.20%
57.6k 56.5k 48.85 1.90%

Foreground of Fig. 1, 756× 456 pixels
6.93k 6.58k 28.52 5.05%
11.1k 10.5k 32.56 5.40%
18.7k 18.0k 38.14 3.74%
28.9k 27.9k 44.44 3.46%
39.2k 38.1k 50.70 2.80%
Background of card image, Fig. 2, 756× 456 pixels
0.503k 0.445k 36.22 11.50%
0.843k 0.779k 38.81 7.59%
1.60k 1.53k 42.79 4.37%
1.94k 1.87k 43.95 3.60%
3.40k 3.31k 52.44 2.64%

Complete card image, Fig. 5, 756× 456 pixels
12.5k 12.0k 29.24 4.00%
26.6k 26.0k 35.20 2.25%
42.4k 41.6k 40.03 1.88%
63.0k 62.1k 44.56 1.42%
90.6k 89.5k 49.35 1.21%

Background of card image for Fig. 5, 756× 456 pixels
0.476k 0.424k 35.75 10.90%
0.863k 0.806k 38.64 6.60%
2.19k 2.11k 43.09 3.65%
3.90k 3.81k 50.90 2.30%
4.40k 4.31k 64.46 2.04%

ACM page, 1219× 1588 pixels
128k 125k 27.53 2.30%
233k 229k 32.53 1.70%
371k 366k 38.05 1.30%
527k 521k 43.65 1.10%
699k 694k 48.88 0.70%
895k 890k 53.82 0.55%

Lena, 512× 512 pixels
3.76k 3.73k 30.28 0.79%
5.95k 5.91k 32.17 0.67%
11.5k 11.5k 35.10 0.00%
22.8k 22.8k 38.16 0.00%
83.8k 84.5k 47.40 -0.83%

Table 1. File size changes from additional con-
text variables

Figure 5. Card with considerable annotations

ral images such as Lena, which contain high-frequency el-
ements such as those around the hair. Smooth document
images such as the card background fare better than im-
ages with high-spatial frequency content. The improvement
on the foreground only is consistent with that on the trans-
formed card image. Comparing, the result for Fig. 1 with
that for Fig. 5, if there are considerable annotations then the
gain to the complete/foreground image is likely to be small.
Further tests (for reasons of space not reported herein) on
a variety of card images demonstrated similar results. Card
backgrounds results are broadly similar or improved upon
the samples, which indicates the principal advantage of this
enhancement. The effect of each of the changes in Section 4
was measured in Tables 2 & 3 for respectively Figs. 1 & 2. It
became evident that the change to pass two does not always
yield results, and that the change to pass three alone can re-
sult in an increase in file size. However, taken with the sign
encoding in pass three, the change to pass three gives an
improvement, and the net result is always an improvement
in output file size (bit-rate).

Table 4 records combined quantization and CABAC tim-
ings on a Pentium 4 at 1.7 GHz for Fig. 1 before and after
the changes. Also included are timings for the complete
decoder. Timings were made with the supplied DjVu inter-
nal timer routines. Taking the partial results alone, there is
about a 25% time overhead for lower PSNR images, but this
decreases to around 10% for higher PSNR images.

5. Conclusion
The probability model for the binary arithmetic coder re-

sponsible for DjVu progressive coding has been improved.
An enhanced set of context variables results in up to 10%
improvement in the bitstream size, depending on SNR res-
olution. There is a complexity trade-off that must be bal-
anced against the reduced transmission time. These trade-
offs are important for Internet access of legacy archives such
as the card index application considered herein. For this
class of images, the DjVu background layer is generally

4



smooth, and gains most from the additions, and for most
foregrounds the effect is similar, though with increasing
handwritten modifications to the printed card, the gain is re-
duced. Knowledge of the different markings present on the
cards, such as pencil, ballpoint, or ink pen, may allow other
layers, as well as the foreground layer, to be extracted. Re-
search is also in progress to find savings from considering
a sequence of card images or other documents as a whole,
rather than coding each card separately. 3D wavelet coding
has already been investigated, and the intention is to ex-
amine combined wavelet transform with Karhunen-Loève
transform or vector quantization in the document sequence
dimension.

References

[1] L. Bottou, P. Haffner, P. G. Howard, P. Simard, Y. Bengio,
and Y. LeCun. High quality document image compression
with DjVu. Journal of Electronic Imaging, 7(3):410–425,
1998.

[2] L. Bottou, P. G. Howard, and Y. Bengio. The z-coder adap-
tive binary coder. In Data Compression Conference, 1998.

[3] C. Christoploulos, A. Skodras, and T. Ebrahimi. The
JPEG2000 still image coding system: An overview. IEEE
Transactions on Consumer Electronics, 46(4):1103–1127,
2000.

[4] G. M. Davis and S. Chawla. Image coding using optimized
significance tree quantization. In J. A. Storey and M. Cohn,
editors, Data Compression Conference – Designs, Codes, &
Cryptography, pages 387–396, 1997.

[5] Specification of DjVu image compression format. Techni-
cal report, AT & T, 1999. Report 1999-29-04 15:46 EDT
available from LizardTech Inc., Seattle, WA.

[6] M. Ghanbari. Video Coding: An Introduction to Standard
Codecs. IEE, London, 1999.

[7] S. Mallat. A theory for multiresolution signal decomposi-
tion: The wavelet representation. IEEE Transactions in Pat-
tern Analysis and Machine Intelligence, 11:674–693, July
1989.

[8] W. B. Pennebaker, J. L. Mitchell, G. G. Langdon Jr., and
R. B. Arps. An overview of the basic principles of the Q-
Coder adaptive binary arithmetic coder. IBM Journal of Re-
search and Development, 32(6):717–726, 1988.

[9] W. Sweldens. The lifting scheme: A custom-design con-
struction of biorthogonal wavelets. Journal of Applied Com-
puting and Harmonic Aanalysis, 3(186-200), 1996.

[10] D. Taubman. High performance scalable image compres-
sion with EBCOT. IEEE Transactions on Image Processing,
9(7):1158–1170, July 2000.

[11] I. H. Witten, A. Moffat, and T. C. Bell. Managing Giga-
bytes: Compressing and Indexing Documents and Images.
Morgan-Kaufmann, San Franisco, 2nd edition, 1999.

IW44 file Change Revised file
size to size

5.42k Pass 1 only 5.38k
Pass 2 only 5.45k
Pass 3 only 5.29k

Sign encode only 5.29k
Pass 3 and

sign encode 5.12k
All 5.05k

36.3k Pass 1 only 36.2k
Pass 2 only 36.3k
Pass 3 only 35.9k

Sign encode only 36.3k
Pass 3 and

sign encode 35.7k
All 35.5k

Table 2. Detailed effect on Fig. 1

IW44 file Change Revised file
size to size

0.503k Pass 1 only 0.496k
Pass 2 only 0.501k
Pass 3 only 0.500k

Sign encode only 0.464k
Pass 3 and

sign encode 0.450k
All 0.445k

1.94k Pass 1 only 1.91k
Pass 2 only 1.94k
Pass 3 only 1.93k

Sign encode only 1.91k
Pass 3 and

sign encode 1.89k
All 1.87k

Table 3. Detailed effect on Fig. 2

IW44 Revised IW44 Revised Increase
file file decode decode in time
size size partial (full) partial (full) %

time (ms) time (ms)
5.42k 5.05k 30 (80) 40 (90) 33 (12)
9.40k 8.89k 40 (90) 50 (110) 25 (22)
16.2k 15.6k 80 (130) 90 (140) 12 (7)
36.3k 35.5k 140 (200) 160 (230) 14 (15)
57.6k 56.5k 220 (280) 240 (300) 9 (7)

Table 4. Partial (full) decoder timings for Fig 1,
excluding disc I/O

5


