
A REAL�TIME PARALLEL IMAGE�PROCESSING MODEL

M� Fleury� H� Sava� A� C� Downton and A� F� Clark

University of Essex� UK

Introduction

Recently� a number of generalised parallel compu�
tation models have emerged� for example McColl
���� E�orts also persist �Rinard et al ���� to �t
the serial model of processing to parallel hard�
ware� The demise of the transputer and the world�
wide retrenchment in the computer industry �P�ster
�	�� have added impetus to the search for one
universal programming model� Image processing
can be viewed as a data�reduction pyramid with
pixel�based� low�level� processing at its base and
semantically�based� high�level� processing at the
apex� It is the base of the pyramid which represents
the bottleneck� However� it is unclear whether the
parallel computation models so far proposed address
the needs of low�level image processing�

This paper therefore proposes a real�time parallel
processing model for image processing� A Fast Four�
ier Transform �FFT� for batch�processing of images
illustrates the model in a distributed workstation
environment� The model has also been implemented
on a dedicated modular parallel machine� a Tran�
stech Paramid �Fleury et al �
��� a C
� parallel
DSP network �Sava ����� and the Unix�like real�
time operating system VxWorks� The intention is
to provide a common processing environment across
accessible parallel architectures� including develop�
ment support tools for the application design pro�
cess from initial sequential simulation� through par�
allel decomposition to embedded parallel applica�
tion�

A Common Processing Model

Main Features

The components of the common parallel processing
model are as follows


The Communicating Sequential Processes �CSP�
model of parallelism �Hoare ���� is selected as an
e�cient model of parallelism� CSP also enables
abstract reasoning about parallelism� in particular
about program correctness� CSP has wide dissem�
ination in Europe in the wake of the transputer�

CSP provides a space in which event ordering may
be nondeterministic� However� this is not a problem
for the programmer as it can be made to provide e��
cient utilisation of the underlying hardware� There
are two important features from the e�ciency stand�
point


�� the ability to alternate responses in a non�
deterministic fashion� and

�� low�overhead context shifting� by means of
threads�

CSP as implemented in the programming lan�
guage occam � is not su�cient for image processing
because extensive use of shared�memory is needed
to avoid excessive memory�to�memory data move�
ments� Unfortunately� on recent hardware� improve�
ments in memory access speed signi�cantly lag and
hence may obviate enhancements in processor speed�

Bu�ers are employed at the user process level to
mask communication latency and to increase band�
width� Input bu�ers reduce the time spent wait�
ing for work �or speed�up waiting� and output buf�
fers smooth out access to the return channel� Buf�
fer access contention is regulated by counting sem�
aphores� which do not restrict access untowardly�

Demand�based data farming provides a �exible way
of scheduling work in most cases� Where this
form of scheduling is not possible the place of the
central data�farmer is taken by a central data�
manager� Centralized coordination is invariably
required� Thread scheduling� as in CSP� is by a
FIFO queue�

The chief practical impediment to demand�based
data farming is that it may be impossible to extend
the set of worker processes in a single farm because
of competition for bandwidth� In other words� as
it stands the data�farm is not a fully scalable solu�
tion because of practical di�culties of setting up
the initial data distribution� Dynamic link switch�
ing between a set of small subordinate farms by the
farmer processor is proposed to address the scaling
problem �Fleury et al �����



Where global communication is needed� it can be
supported within a set of worker processes by a com�
bination of centralised message switching and inter�
worker�module links Fleury et al ���� A generic set�
up which will work in farming mode and in global
mode is shown in Figure ��

Message records are provided� the equivalent of
occam�s protocols� To enable reuse the communic�
ation structure should be transparent to the type of
application messages�

Asynchronous multicasts from farmer processes are
supported� A multicast enables e�cient distribution
of global data� A multicast does not initiate any
reply messages� thereby restricting circular message
paths�

The CSP model of parallelism is static� Low�level
image processing routines� being generally determin�
istic� are unlikely to require unpredictable patterns
of communication or computational needs� A static
model also facilitates CSP�s channel communica�
tion construct which provides an automatic name
space� without the need for name�servers�

Inter-module communication is one-hop only.

Dynamically-switched rotating link

Central Farmer/Data Manager

I/O

farm/module 1

Intra-module communication
is two-hop maximum.

farm/module 2 farm/module n

Figure �
 Generic Set�up

A Practical Extension

In practice� image�processing algorithms do not
function in isolation but exist as part of a multi�
algorithm application� The processing model is
extended to cope with this requirement by rep�
licating the farm structure in a Pipeline of Pro�
cessor Farms �PPF�� A suitable decomposition
maps an existing sequential program onto the
pipeline� Design rules for the decomposition which
enable real�time constraints� such as throughput and
pipeline traversal latency� to be met are already
available in Downton et al ���� though static applic�
ation behaviour is presently needed for an accurate
decomposition�

The development cycle is


� Time the components of the algorithm in a
sequential setting�

� Decompose the sequential application into a
pipeline of parallel components� each load�
balanced using a processor farm�

� Account for dynamic costs such as communic�
ation and work��ow distributions�

� Test the concept in a distributed environment�
with the bene�t of the familiar Unix operating
system� Unexpected message orderings will
require debugging�

� Transfer the application to the target machine
which has the same common processing struc�
ture� Performance debug the application�
identifying hold�ups by means of execution
traces�

A Pipelined Example

The design process initially consists in identify�
ing suitable decompositions of sequential applica�
tion code� Generally� PPF is appropriate to multi�
algorithm applications but a single algorithm serves
to outline the method�

The form of an FFT is well known� However� unfa�
miliar code can be analysed in a semi�automatic
fashion� with the help of top�down pro�lers� Atten�
tion is concentrated on functions which take up
a signi�cant portion of the code runtime� The
Quantify pro�ler �Pure Software ����� is preferred
to gprof as it counts machine cycles rather than
relying on a statistical analysis of procedure calls
�Pond and Fatemen ������ Figure � is a screen shot
of a call graph for a row�column �RC� �D FFT size
	�� �a mixed�radix Stockham autosort algorithm
was used�� In the centre� stemming from the main

procedure� are the principal procedures ranked in
time order� Subsidiary system calls are to the right�
The three Factor functions are small�order FFTs�
while ReadMPgm loads the image� Obviously� the RC
transform can be split into input� �D row transform�
transpose� �D column transform and output stages�
At a lower�level of granularity the small�order trans�
forms could form a �D row �column� FFT pipeline
but the communication overhead would be prohibit�
ive on workstation�based hardware� Similarly� tak�
ing advantage of the linearity of the Fourier trans�
form to decompose �D row or column transforms by
an overlap and add method is too expensive but may
be appropriate for VLSI� The need for a design to
adapt to di�ering architectures is a theme of PPF�

Figure 	 is an idealised timing diagram for a Four�
ier transform pipeline� showing that perfect steady�
state overlap is achievable� The processing power�



Figure �
 Call Graph of a �D FFT

implemented in our case on Sun 
 architecture
machines �through the socket application program�
mer�s interface�� must then be arranged to balance
three stages of a pipeline� Figure 
�

Write
image

Farmer 2

Transpose

Farmer 1

Load
image

L5 L6 L7

Fr1 Fr2 Fr3 Fr4 Fr5 Fr6

T1 T2 T3 T4 T5 T6

TR1 TR2 TR3 TR4 TR5

T4 T5T1 T2 T3

Fc1 Fc2 Fc3 Fc4

W1 W2 W3

L1 = Load image one
Fr1 = Farm out rows of image one
T1 = Transfer image one
TR1 = Transpose image one
Fc1 = Farm out columns of image one
W1 = Write transformed image one

Thread

Time

L1 L2 L3 L4

Figure 	
 Ideal Timing of an FFT Pipeline

The number of processors needed in the farms
depends critically on the the time to transpose the
image matrix since the two farms being balanced
can otherwise grow with the problem size �and are
incrementally scalable�� The transpose time varies
with image size and the properties of the memory
hierarchy �van Loan ������ A variety of sequential
transpose algorithms �Figure �� are possible� If the
block size is chosen appropriately to match the cache
line size gains may be made� Cache lines vary from

 to ��� bytes on recent processors� On the microS�
PARC II processor ��� MHz nominal clock speed� of
the SPARCstation � employed in the tests the data
cache has �� byte lines� Figure � shows the mean

Image files in

Worker 2Worker 1

Row FFT farm

Worker n

Column FFT farm

Transformed images out
Farmer 1 Transpose Farmer 2

Worker 2n
n + 1

Worker Worker
n + 2

Figure 

 Logical Topology of an FFT Pipeline

of ten tests on complex�valued images to determine
the optimum block size� when little e�ect is discern�
ible� When the block�by�block method was com�
pared to the diagonal method �appropriate to mul�
tiprocessor interleaved memories� and the obvious
row�to�column method� it was the latter that per�
formed best� Figure ��

(a) (b)

(c)

(a) block-by-block

Transpose method:

(b) diagonal to diagonal

(c) row to column

Figure �
 Image Transpose Algorithms

Having established the best transpose algorithm�
timings for that algorithm were taken as a �xed
sequential overhead� The computation time was also
recorded for one of the �D FFT phases across a num�
ber of processor types �in the SPARC family�� This
enables an estimate to be made of the number of
processors needed in the FFT phases to balance a
pipeline� if there is just one processor performing the
transpose� The estimate is best case as no account
of communication overhead has been taken� Fig�
ure � shows that the number of processors in each of



0

0.5

1

1.5

2

2.5

3

3.5

4

0 100 200 300 400 500 600 700 800 900 1000 1100

T
im

e 
(s

)

Image Size

64
32
16

8
4
2

Figure �
 Block�by�block Transpose Timings

0

0.5

1

1.5

2

2.5

3

3.5

0 100 200 300 400 500 600 700 800 900 1000 1100

T
im

e 
(s

)

Image Size

block
diagonal not in place

diagonal in place
transpose separate real and imag. in place

transpose separate real and imag. not in place
transpose Fortran style vector

Figure �
 Other Transpose Algorithm Timings

the row and column data�farms will be rather large
if the pipeline stages are homogeneous� The size
of the image does not have an important e�ect on
the scaling of the pipeline stages� Any variation is
caused by the advantage of those image sizes which
are an exact power of four� since a small order size
four transform is more e�cient than a size two trans�
form� though the timing for image size ��� appears
anomalous� If a lower speed processor is placed in
the transpose stage fewer processors are needed in
the FFT stages�

A simpli�ed thread layout for the model is shown
in Figure �� I�O threads take up slack as the farm�
ers may otherwise be under�utilized� Once a pro�
posed decomposition has been determined� based
upon sequential pro�ling� the application program�
mer is responsible for adapting the existing sequen�
tial transpose code and FFT� but all other code�

0

5

10

15

20

25

0 100 200 300 400 500 600 700 800 900 1000 1100

N
o.

 o
f P

ro
ce

ss
or

s 
in

 T
ra

ns
fo

rm
 S

ta
ge

 o
f F

F
T

Image Size

50 MHz v. 50 MHz
50 MHz v. 33 MHz.
50 MHz v. 20 MHz

Figure �
 Pipeline Processor Numbers for Di�ering
Processors in the Transform and Transpose Stages

implementing parallel communication and support
functions� is part of a generic PPF template�

Process

9

11

12

Worker Process

Threads:

Buffering

Row FFT

Thread Scheduler

From backing storage

1

4

3

5

Farmer One

Threads:

Main processing
Loop

Image File Input

2

Thread Scheduler

Image Transpose

The numbering refers to the order
of the main processing steps.

Farmer Two Process

Threads:

Main processing
Loop

6 7

Image File Output

Thread Scheduler

8

10

To backing storage

Worker Process

Threads:

Buffering

Column FFT

Thread Scheduler

Figure �
 Threads in an FFT Pipeline

An additional feature of the template is a built�in
trace mechanism� A logical clock system �Raynal
and Singhal ��	��� recording message ordering� has
been implemented in order to event�stamp traces�
�Uncertain propagation delay in a local network
will restrict the resolution of a real�time clock if it
relies on synchronisation messages in a distributed
setting�� Figure �� is a snapshot from the imple�
mentation� At this stage in development� the dis�
play is on the post�mortem visualizer� ParaGraph
�Heath and Etheridge ��
��� The plotted lines rep�
resent messages from one process to another� Pro�
cessor � is farmer �� For clarity� there is one worker
in farm �� processor �� Processor � is the trans�
pose and processor 	 is the second farmer� To
the right of Figure ��� the transpose is receiving
the next image from farmer �� while farmer � also



handles work from its farm� Meanwhile� farmer � is
passing work back and forth to its worker �processor

�� Figure �� con�rms through message ordering
the possibility of completely overlapped processing�
The actual degree of overlap can be judged in the
distributed setting only approximately by elapsed
wall�clock time� For the �nal stage of performance
debugging� a trace based on a global real�time clock
on the target machine has been implemented to pin�
point ine�ciencies �Fleury et al ������

Figure ��
 Trace of the FFT Pipeline

Concluding Remarks

A common processing model is proposed for real�
time image processing� The model may be seen as a
relaxation of an existing static model of parallellism�
CSP� The justi�cation for the model is based on
providing an e�cient software structure for embed�
ded real�time applications� In a distributed worksta�
tion environment the processing model is envisaged
in a prototyping role� providing a full range of devel�
opment support facilities� The distributed environ�
ment represents a low�cost entry point� In a ded�
icated parallel machine� performance tuning facil�
ities would be available� Timings reveal less than
�� overhead from event tracing in typical applica�
tion regimes� in which case� provided real�time con�
straints are met� the monitoring structure might be
left in situ� Appropriate account should be taken of
the di�erences in architecture between the machines
on which an algorithm is simulated and the target
machine� An FFT exemplar shows that the trans�
pose stage�s performance may vary through di�cult
to predict interactions between a particular trans�
pose algorithm and the memory hierarchy and this
would e�ect the balance of the pipeline� Heterogen�
eous processors across stages of the FFT pipeline
will decrease processor costs�

Acknowledgement

This work is being carried out under EPSRC
research contract GR�K
���� �Portable software
tools for embedded signal processing applications�
as part of the EPSRC Portable Software Tools for
Parallel Architectures directed programme�

References

�� McColl� W� F�� �Scalable Computing��
LNCS� ����� 
����� �����

�� Rinard� M� C�� Scales D� J��
Lam M� S�� �Jade
 A high�level machine�
independent language for parallel program�
ming�� IEEE Computer� ��� �� ���	�� ���	�

	� P�ster� G� F�� �In Search of Clusters
 the
Coming Battle of Lowly Parallel Computing
Systems�� Prentice�Hall� Upper Saddle River�
NJ� �����


� Fleury� M�� Sava� H�� Downton� A� C�� Clark�
A� F�� �Designing and instrumenting a soft�
ware template for embedded parallel systems��
in �UK Parallel ����� ��	����� Springer� Lon�
don� �����

�� Sava� H�� Fleury� M�� Downton� A� C�� Clark�
A� F�� �Fast implementation of discrete wave�
let transform based on pipeline processor
farming�� elsewhere in IPA����

�� Hoare� C� A� R�� �Communicating Sequential
Processes�� Prentice�Hall� Englewood Cli�s�
NJ� �����

�� Fleury� M�� Hayat� L�� Clark A� F�� �Perform�
ance Estimation for a Dynamically Recon�g�
urable Multiprocessor System Applied to Low�
level Image Processing�� in �Proceedings of
the Conference on the Performance Evalu�
ation of Parallel Systems �PEPS ��	��� ����
��	� Univ� of Warwick� ���	�

�� Fleury� M�� Hayat� L�� Clark A� F�� �Par�
allelizing Grey�scale Coordinate Transforms��
IEE Proc� Pt� I VISP� �
�� 
� �������� �����

�� Downton� A� C�� Tregidgo� R� W� S�� C�uhadar�
A�� �Top�down structured parallelisation of
embedded image processing applications��
IEE Proc� Pt� I VISP� �
�� �� 
	��
	�� ���
�

��� Pure Software Inc�� �	�� Sth� Mary Ave�
Sunnyval� CA� �Quantify User�s Guide��
�����

��� Ponder� C�� Fateman� R�� �Inaccuracies in
Program Pro�lers�� Software P� � E�� ��� ��

���
��� �����



��� van Loan� C�� �Computational Frameworks
for the Fast Fourier Transform�� SIAM� Phil�
adelphia� �����

�	� Raynal� M�� Singhal� M��
�Capturing Causality in Distributed Sys�
tems�� IEEE Computer� ��� �� 
����� �����

�
� Heath� M�� Etheridge� J��
�Visualizing the performance of parallel pro�
grams�� IEEE Software� �� �� ���	�� �����

��� Fleury� M�� Downton� A� C�� Clark� A� F��
Sava� H�� �The Design of a Clock Synchroniz�
ation Sub�system for Parallel Embedded Sys�
tems�� IEE Proc� Pt� I CDT� accepted for
publication� �����


