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Abstract

Practical parallelizations of multi-phased low-level image-processing algorithms may
require working in batch mode. The features of a new processing model, employing
a pipeline of processor farms, are described. A simple exemplar, the Karhunen-Loeve
transform, is prototyped on a network of processors running a real-time operating system.
The design trade-offs for this and similar algorithms are indicated. In the manner of co-
design, eventual implementation on large- and fine-grained hardware is considered. The
chosen exemplar is shown to have some features, such as strict sequencing and unbalanced

processing phases, which militate against a comfortable implementation.
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1 Introduction

Many low-level image-processing (IP) algorithms, such as spatial filters, are completely lo-
calized in their data references. If adjacent image data are overlapped at boundaries then
at a small additional cost a data-farming programming paradigm can be employed, in which
the only communication is between worker process and data farmer. Provided that n > p,
where n is the number of sub-images farmed out — for instance an image row, and p is the
number of processors, then load-balancing can be made semi-automatic by having returning
processed work form an implicit request for more data. This method will work even when
there is no a priori knowledge of the sub-image workload distribution. Using separability
and/or linearity, it is also possible to decompose other algorithms, such as orthogonal trans-
forms [1], rather than employ a global access pattern. If these latter algorithms are viewed
as single-image library functions then a difficulty commonly arises because it is necessary to
centralize between the data-farming phases. However, since IP is often in batch mode [2], it
only requires a slight shift in perspective towards continuous data flows in order to realise
that effective parallelizations may occur if a pipeline is the normal form of processing. In [3],
the advantages of the pipeline for practical computation vis-a-vis the hypercube were already
formulated in relation to IP, the authors advocating a re-partitionable pipeline.

By laying emphasis on the data-farm one does in effect use the same tuned program for
as many low-level IP algorithms as is possible, analogously to the way commercial databases
present the same structure and support software across a variety of hardware. Needless to
say, the data-farm paradigm is a deadlock-free design methodology [4] and moreover each
farm within a pipeline preserves locality of reference, which in [5] is shown to be vital for
effective use of low-dimensional direct networks.

After partition of a large sequential program written in a structured manner each stage of
the pipeline can be parallelized by means of a data-farm. The program code length might be
circa 10,000 lines in length and unfamiliar to those charged with the parallelization. In [6],

there is a new system design and development methodology for decomposing multi-algorithm



applications into pipelines of processor farms, i.e. parallel pipelines, which has been success-
fully employed [7, 8, 9, 10, 11] in real-time embedded applications.! However, the same idea
works for single algorithms and moreover the idea, and its limitations are illustrated in a
simple form when directed to single algorithms.

In this paper, the basic concept is applied to a Karhunen-Loeve transform (KLT), which is
generally engaged in batch mode, for example to process multi-spectral satellite imagery. As
a parallel processor, we have used a network of microprocessors running the VxWorks real-
time operating system [12]. Though the VxWorks-based system is mainly intended for direct
application of real-time systems such as in robotics, we have also found it has a potential for
algorithm prototyping as a parallel pipeline can be mapped to the system. VxWorks system
overhead is low: it is single-user; the thread structure is not superimposed on top of heavy-
weight processes; and event response times are optimized. Algorithm prototyping is a first
step in co-design, whereby a suitable hardware/software mix for a target embedded systems
is decided upon [13].

In the paper, various early suggestions for target implementation of the KLT are made
in order to reach real-time performance. Only the computational model is considered. The
precise number of VLSI components making up a parallel pipeline is not determined. The TI
C80 or MVP [14], in effect a four worker data-farm on one integrated circuit (IC), as a VLSI
solution matches the computational model, except that only the ‘farmer’ processor on the 1C
has a floating-point unit. Systolic arrays could be substituted as the computational elements
for two of the component data farms, alleviating a problem on general-purpose machines of
insufficient memory bandwidth.

The VxWorks system is thread-based with rapid context switching. We indicate other
thread-based environments which could also serve as a means of prototyping parallel pipelines.
By exploiting the commonality between the environments it is possible to specify an abstract

machine which has wide applicability. Notice that similar ideas in which the Communicating

'These embedded systems can be characterised as soft and data-dominated. Hard real-time systems have

safety-critical constraints and are generally control-dominated.



Sequential Processes (CSP) [15] framework is enlarged are also current in hard real-time
systems [16]. The transputer, which is now of course an elderly microprocessor but does
implement the CSP framework, has not been superceded in terms of provision for context
switching though many DSP cores are superior in computational terms.

The prototype parallel pipeline was transferred to a distributed-memory parallel computer,
the Transtech Paramid [17], in order to make performance tests in an isolated environment.
The Paramid is an i860-based machine with transputers acting as communication coprocessors
to the i860s.

Section 2 introduces in a practical way the VxWorks operating system and compares it
in passing to two other thread-based systems. Section 3 reviews various Karhunen-Loeve
computational algorithms. In Section 4, the algorithm used for the parallel implementation is
detailed, including computational complexity. Possible implementations suitable for a library
of parallel routines are also indicated in Section 4. Different pipelined arrangements for
working in batch mode are the subject of Section 5. Some techniques transferable from the
relatively simple KL T algorithm to multi-algorithm applications are additionally mentioned in
Section 5. Section 6 details performance results from tests on the Paramid. Finally, Section 7

summarizes and draws some conclusions.

2 The VxWorks Real-Time Kernel

VxWorks is a Unix-like single-user operating system (O.S.) for real-time development work.
The KLT program modules were written in ‘C’, cross-compiled on a PC running the NextStep
0.S. (based on the Mach micro-kernel) and loaded and linked on attached 68030K boards.?
The 68030 microprocessor [18], has an instruction set with test-and-set and compare-and-
swap, suitable for memory access control. The 68030K boards are linked by an Ethernet
LAN, and VxWorks provides a source-compatible BSD 4.3 socket API for using the network.

In Fig. 1, two alternative configurations for the present VxWorks system are shown. Each

2Versions of VxWorks are available for a range of more recent microprocessors.



program module consists of one or more tasks, which can be spawned as required. Remote
spawning was accomplished by writing an iterative server.

VxWorks is representative of an approaching consensus in facilities for parallel processing
shared for example by transputer-based machines using Inmos parallel ‘C’ [19] and by a
SPARC-based workstation network with the light-weight process (LWP) library, that we have
currently ported our pipelines to. The Java programming language, which also has elementary
support for multi-threading represents a future implementation vehicle. The facilities consist

of:

e support for low-overhead context switching, though switching is as yet based on control

or communication blockage and not on cache conflict;

e a local inter-thread communication mechanism, which can be extended to the external

network; and

e an access-control mechanism to regulate write contention to static memory. Counting
semaphores, which are low-overhead, are constructed for access-control using existing

control primitives.

With these facilities we find that we can construct a processing model [20] which amounts to
a relaxed version of the widely-disseminated CSP model.

The main augmentations to the CSP model are: since low-level IP is data-intensive,
shared memory is required to avoid excessive memory-to-memory transfers; and local buffers
are provided to guarantee that communication latency is masked given sufficient computation
granularity. We also employ a non-deterministic operator, CSP’s alternation, for the explicit
purpose of efficient de-multiplexing. For example, in VxWorks alternation was simulated by
the socket API select call, whereas alternation is microcoded on the transputer. Notice that
this use of alternation does not prevent limited compiler rescheduling of communication calls
including message aggregation [21].

In both the Sun workstation and the VxWorks implementations, CSP’s channel can be



effectively simulated by socket message-transmitting calls.®> In fact, we specialise this concept
by always including a message tag. This allows intervening buffering software to be transpar-
ent to the form of the succeeding message and therefore the software is reusable. By using
streamed communication for tag and message, there is no set-up overhead for tag messages
(or multiple components of one message). On occasions where disparate elements form one
message, the socket vectored mode of communication will underlie the channel call. How-
ever, again our aim is to provide a single communication primitive whatever the underlying
mechanism.

In our LWP library implementation, the LWP rendezvous call could directly model
the CSP channel when confined to intra-processor communication. Likewise, in VxWorks
a message queue primitive is available which when single-spaced fulfils the same purpose.
A software wrapper is provided to make it appear that the channel is used for intra- and
inter-processor communication.

The features of the common model can be captured in a high-level template. The data-
farm template which we have implemented across socket-based platforms is shown in Fig. 2.
Scheduler threads, which provide round-robin scheduling on a priority-based system, were not
required on the VxWorks implementation. Optional I/O handling threads in the farmer can

be included though system buffering may already occur.

3 The Karhunen-Loéve Transform

The nomenclature of the Karhunen-Loeve Transform (KLT) [22, 23] is confused [24]. In
statistics, the KLT is reserved for a transform that acts on any data set, while the term
Principal Components Algorithm (PCA) is reserved for zero-meaned data. However, in this
paper the term KLT refers to a transform acting on zero-meaned image data.

The KLT differs from other common orthogonal transform algorithms, such as the Fourier

3The VxWorks system is available in a tightly-coupled variant, by means of processors linked by a VME
bus, but again sockets form the principal communication mode. Notice that the 68030 supports bus-control

signals.



transform, in two respects:
e it is data-dependent; and
e it is applied to an image ensemble.

In statistics, the columns of the matrix to be transformed represent realisations of a stochastic
process. Therefore, it is legitimate to employ the PCA to reduce the dimensionality of the
data. In image processing, each image can be viewed as a single realisation of a stochastic
process. Therefore, the transform should act on a sample set of images, from a possibly
infinite population of images.

The KLT has a number of features [25] which occur by virtue of the rotation of the data
representation basis vectors (Fig. 3). Amongst the features relevant to the computation of a

KLT are:

e The KLT transform achieves optimal data compression in the mean-square error sense.*

e The KLT projects the data onto a basis that results in complete decorrelation, though
only if the data are first zero-meaned. Notice that the decorrelation is of statistical

significance and does not correspond necessarily to a semantic decomposition.

e If the data are of high dimensionality, by reason of properties one and two it is possible

to reduce the dimensionality.

e For some finite stationary Markov order-one processes with known boundary conditions
— many natural scenes acquired by an appropriate sensor — the basis vectors are a
priori harmonic sinusoidals and hence a fast algorithm (the FFT-like sine transform)
is available [26]. Another route to fast implementation is by neural nets employing

Hebbian learning [27].

“That is e(k) = E[(z — #)T (2 — )] is a minimum, where & is the representation of « truncated to k terms.
E is the mathematical expectation operator. The minimal orthonormal basis set is found by the method of

Lagrangian multipliers, using the orthonormality of the basis vectors as the constraint.



However, the lack of a general fast algorithm, because the covariance matrix eigenvectors
must be found in every case, makes it pressing to find a suitable parallel decomposition.

The KLT is employed in multi-spectral analysis of satellite-gathered images [28] through
the spectral signature of imaged regions. Significant data reductions are achieved in the
storage of satellite images if the multi-spectral set are transformed to KLT space. The di-
mensionality in this application is relatively low.

The KLT has also been applied to sets of face images [29]. A candidate face, once nor-
malized and transformed, can be matched by a suitable distance metric (e.g. Mahanalobis)
to a database of faces stored in KLT space. A reformulation of the KLT algorithm is uti-
lized for the face recognition application, whereby the rows of each face image are stacked
to form one vector per-image. In [30], a way of reducing the computational complexity of
the reformulation is demonstrated. In fact, the reformulation apparently is equivalent to the
algorithm developed in Section 4. Unfortunately, the alternative KLT algorithm is not as
clearly parallelizable as the algorithm of Section 4 because of the long vectors required.

The face database and other databases are usually of high dimensionality. In this case,
an iterative solution may be necessary [31]. The iterative solution relies on keeping the state
of the KLT space which does not suit a data-farming programming paradigm.

It is apparent from Fig. 3 that the SNR will be improved by a KLT if additive Gaussian
noise is present, resulting from incoherent sensors, as in multi-spectral scanning. There is a
variant of the KLT [32] suitable for coping with multiplicative noise such as speckle noise in
multifrequency synthetic aperture radar. Finally, noise-dominated image sets may be analysed

through the low-component images.

4 KLT Parallelization

Consider a sample set of real-valued images from an ensemble of images. For example, these
might be the same scene at different wavelengths or a collection of related images at the same

wavelength. Create vectors with the equivalent pixel taken from each of the images, i.e. if



there are D images each of size M x N then form the column vectors 7 = (x%, x}j, - ,xg_l)
fork=0,1,..., MN —-1,7=0,1,...,M —1 and j =0,1,..., N — 1. Calculate the sample
mean vector:

) | MNoLo

My = S5 kz::O Ty (1)

Use a computational formula to create the sample covariance matrix:
1 MN-1
= =T o ST
(Cr] = MN ( Z Ik%) — MgMmy, , (2)
k=0
with superscript T' representing the transpose. Equation (2) is appropriate if the image
ensemble is formed by a stochastic process that is wide-sense stationary in time. Form the

eigenvector set:
[Cr]ﬁk:)\kﬁk, k=0,1,...D—1, (3)

where {}} are the eigenvectors with associated eigenvalue set {\;}. [Cy] is symmetric and
non-negative definite, which implies that the {} } exist and are orthogonal. In fact, the eigen-
vectors are orthonormal and therefore form a well-behaved coordinate basis. The associated
eigenvalues are nonnegative. In any expansion of a data set onto the axis, the eigenvalues
index the variance of the data set about the associated eigenvector.®

The KLT kernel is a unitary matrix, [V], whose columns, {u}} (arranged in descending

order of eigenvalue amplitude), are used to transform each zero-meaned vector:
Je = [V)E (@ — he) k=0,1,...,MN — 1. (4)

The properties of [V] can serve as a check on the correct working of the algorithm.
The time complexity of the operations is analysed as follows, where no distinction is made

between a multiplication and an add operation:

e Form the mean vector with O(M N D) element-wise operations.

>This property arises from e(k) = ;ikJrl Aj.



Calculate the set of outer products and sum, ]16\/1:1(\)7—1 % TF, in O(M N D?) time.

e Form ,mL; subtract matrices to find [C,]; and find the eigenvectors of [C,]. The

eigenvector calculation is O(D?).

Convert the {#j} to zero-mean form in O(MND).

Form the {iji} by O(MN D?) operations.

Since the covariance matrix is, for the chosen multi-spectral application, too small to justify

parallelization, the total parallelizable complexity is
O(MND) + O(MND?) (5)

Consider the KLT as applied to a single image in one-off mode. One way to parallelize
the steps leading to (4) would be to send a cross-section through the images to each process,
selecting the cross-section on the basis of image strips. The geometry is shown in Fig. 4. In
a first phase, the mean vector of each cross-section image strip is found and returned to a

central farmer along with a partial vector sum, forming the strip matrix:

1 (MN-1)/n
Tl=3% 2 &E) i=12..n, (6)
k=0

for n strips. In a second phase, the farmer can find [V] from [C,], which is now broadcast so
that for each strip the calculation of {#;} can go ahead.

However, the duplication of sub-image distribution (once for the partial sums and once to
compute the transform) is inefficient.

A possibility is to retain the data that are farmed out in the first phase at the worker
processes. On a transputer-based system with store-and-forward communication the first
farming phase will have established an efficient distribution of the workload given the char-
acteristics of the network. Therefore, the second phase will already have approximately the
correct workload distribution. This is not a solution on a shared network of workstations as
processor load and network load is time dependent. The solution is also not a general one since

other two-phased low-level IP algorithms do not usually use the same data in both phases,
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though the time complexity can be similar. The method of finding a workload distribution
by a demand-based method and then re-using the distribution for a static load-balance in
subsequent independent runs may have wider potential.

An alternative static load-balancing scheme is to exchange partial results amongst the
worker processes so that the calculation of matrix [V] can be replicated on each worker
process. A suitable exchange algorithm for large-grained machines can be adapted from [33],

if the processors can be organized in a uni-ring.

5 A Pipeline Decomposition

The design trade-offs between pipeline throughput, latency and algorithm decomposition for
practical parallelizations are explored in [6] and this section makes use of the conceptual
framework. If a continuous-flow pipeline for KLTing image sets were to use temporal par-
allelism, by simply sending an image-set to each worker processor, then the communication
and/or buffering overhead would be large given that it would not be easy to overlap commu-
nication with computation. An idealized, pipeline timing sequence of a decomposed KLT is
given in Fig. 5. The covariance and transform threads are in fact the data-farmers which in
theory should use sufficient worker tasks to balance the time required to find the eigenvectors
of the covariance matrix. In a preliminary implementation of this elementary pipeline on the
VxWorks-based system, both farmers were placed on the same processor (Fig. 6) since the
same data are needed for forming the covariance matrix and for transforming to eigenspace.5

In principle, double buffering of image sets allows loading of one image set to proceed while
the previous image set is transformed. However, for a VLSI implementation this implies a
total buffer size of 5 Mbytes and upwards would be needed for (say) 10 images of 512 x 512
size. Additionally, if one makes a best-case estimation of the desired number of processors

on the two farms to achieve a balance, based on (5), the number of images in a set and the

number of processors is impossibly large (Fig. 7). For a VLSI implementation, the calculation

5A worker thread can also be placed on the same processor to soak up any spare processing capacity.
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of the eigenvectors cannot be implemented by simple circuitry as can the farmed stages and is
likely to reduce this scaling in a favourable direction. A suitable VLSI processor may combine
a RISC core for the eigenvector calculation with an array for regular calculations. Such a
processor, with array and RISC on the same die, is implemented in [34]. The array can work
in systolic or SIMD mode.

The first pipeline stage can be further partitioned into calculation of the mean vector and
calculation of the outer-products, since the two calculations are independent and therefore can
take place in parallel. Additionally, the second stage calculations can be split further between
reducing the image set to zero-mean form and transforming the image set, though these
calculations are not independent. However, the reduction to zero-mean form is independent
of the eigenvector calculation and could take place in parallel with that calculation. These
partitioning possibilities are shown in Fig. 8. Assume that the two farms in the first pipeline
partition can be operated in parallel, by means of two farmers on the same processor feeding
from a common buffer. Since the maximum time complexity of each stage of the new pipeline
is reduced from O(MND) + O(MND?) to O(MND?), then the number of processors on
any one farm that will reduce pipeline throughput is reduced. However, the bandwidth
requirements are increased. Since both the components of the second partition are dependent
on the completion of all the calculations on the first partition, the pipeline traversal latency
will not be reduced by decomposing the image into smaller components.

The pipeline of Fig. 8 is relevant as the basis of a VLSI scheme, possibly through a
systolic array. For a large-grained parallelization, the arrangement of Fig. 6 but merging
the eigenvector calculation into the work of the second farmer is practical. The scheduling
regime on the processor hosting the two farmers is round-robin for fairness. Since the time
complexity of both stages of the pipeline is the same it is now easily possible to scale the
throughput in an incremental fashion.

The pipeline makes for a clearly defined development sequence, going from a sequential
version to a two-stage implementation (when the transform is omitted or performed sequen-

tially), to the final three stage implementation. Note that a somewhat more efficient purely
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sequential version occurs if the image set are zero-meaned before forming the covariance ma-
trix, rather than separately reduce the covariance matrix to zero-mean form as occurs in the
parallel version.

A form of parallel accounting is possible if the messages are instrumented by means of
logical clock event-stamps [35]. The trace is ‘double-entry’ since the correct messages are
matched by examining the message lengths. In Fig. 9, showing a space-time display snap-
shot from the ParaGraph visualizer [36], one worker has been used in each farm, with farmer
one as processor 0, farmer 2 as processor 4, worker farm one as processor 1, worker farm two as
processor 2 and eigenvector processor 3. The message event-trace records the end of the first
image set processing, the hand-over of covariance and mean parameters, the commencement
of processing by the first farm on the second image and the second farm’s processing of the
first image. Clearly, no time gap information is given but this is perhaps mostly relevant to

the target system [37].

6 Results

The Paramid multicomputer employed has eight processing modules each with two little-
endian processors, an i860 and a transputer, communicating through overlapped memory
[19]. The transputer has link valency four, each link sustaining a raw 20Mb/s. When used
in this manner the i860 supports a single process. The 1860, run at 50MHz, is a superscalar
design with internal Harvard architecture, and four-way vector units [38] resulting in a theo-
retical peak 200Mflop/s, though sustained performance can be a small fraction of that figure,
25.6Mflop/s using a standard in-cache benchmark [39]. The Portland optimising compiler
was utilised to take advantage of the i860s features. Timings record the arithmetic mean
from five image sets passing through the pipeline, with clock resolution ~ 0.001s. The i860s
have 16Mbytes RAM which meant that a set of ten square images, size 256 single precision
floating point pixels, would fit into main memory, and the equivalent set size 512 would not.

Table 1 records timings for two pipelines. To discount I/O times, the same image set,
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loaded into main memory, was reused. The Paramid normally loads images via a SCSI link
which would create an I/O bottleneck. Local buffers to store three image lines were placed
at the workers. In the first pipeline, each farmer occupied its own processor, two workers
were employed in each farm, and the eigencalculator was also placed on a separate i860. In
order to increase the size of the farms to three workers, the eigenvector calculations were
switched to the transputer associated with the first farmer. However, the second pipeline
showed an appreciable drop in performance. Equivalent times were recorded (not shown in
the table) when the eigenvector calculations were shifted to the second farmer’s transputer.
The difficulty of improving the throughput illustrates the need to consider special-purpose

hardware.

7 Conclusion

The Karhunen-Loeve Transform (KLT) has been prototyped on a pipeline of parallel processor
farms. The KLT is an exemplar of a generalised approach. In the exemplar, various algo-
rithm analysis techniques are shown in simplified form. The pipeline employs reusable and
instrumented data-farm software modules. The design exploits a commonality between recent
parallel environments. The initial implementation of the KLT is upon a real-time Unix-like
operating system kernel, VxWorks. A two-phased single farm arrangement is described, in
one mode of which the initial workload distribution, arrived at by a demand-based method,
is reused in a static load-balance. Two different pipeline decompositions are explored. To
achieve a completely balanced pipeline for all but the largest of jobs will be prohibitive in
practical terms. The simpler of the two pipelines is appropriate for large-grained applications,
whereas a further decomposition may be relevant to fine-grained VLSI implementations. The
strict sequencing in the KLT algorithm prevents attempts to improve the pipeline traversal

latency.

14



Acknowledgement

This work was carried out under EPSRC research contract GR/K40277 ‘Parallel software
tools for embedded signal-processing applications’ as part of the EPSRC Portable Software

Tools for Parallel Architectures directed programme.

15



References

[1]

M. Fleury and A. F. Clark. Parallelizing a set of 2D frequency transforms in a flexible
manner. [EE Proceedings Part I (Vision, Image and Signal Processing), 145(1):65-72,

February 1997.

E. R. Davies. Image processing—its milieu, its nature, and constraints on the design
of special architectures for its implementation. In M. J. B. Duff, editor, Computing

Structures for Image Processing, pages 57-76. Academic Press, London, 1983.

M. H. Sunwoo and J. K. Aggarwal. Flexibly coupled multiprocessors for image processing.
In F. A. Briggs, editor, International Conference on Parallel Processing, volume 1, pages

452-461. Pennsylvannia State University, 1988.

P. H. Welch, G. R. R. Justo, and C. Willcock. High-level paradigms for deadlock-free
high-performance systems. In Transputer Applications and Systems 93, pages 981-1004.

10S, Amsterdam, 1993.

A. Agarwal. Limits on interconnection network performance. IEEE Transactions on

Parallel and Distributed Systems, 2(4):398-412, October 1991.

A. C. Downton, R. W. S. Tregidgo, and A. Cuhadar. Top-down structured parallelisation
of embedded image-processing applications. IEE Proceedings, Part I (Vision, Image and

Signal Processing), 141(6):431-437, December 1994.

A. CQuhadar and A. C. Downton. Structured parallel design for embedded vision sys-
tems: An application case study. In Proceedings of IPA’95 IEE International Conference
on Image Processing and Its Applications, pages 712-716, July 1995. IEE Conference

Publication No. 410.

A. C. Downton. Speed-up trend analysis for H.261 and model-based image coding al-
gorithms using a parallel-pipeline model. Signal Processing: Image Communications,

7:489-502, 1995.

16



[9]

[10]

[13]

[15]

[16]

[17]

[18]

[19]

H. P. Sava, M. Fleury, A. C. Downton, and A. F. Clark. A case study in pipeline processor
farming: Parallelising the H.263 encoder. In UK Parallel 96, pages 196-205. Springer,

London, 1996.

A. Cuhadar, D. Sampson, and A. Downton. A scalable parallel approach to vector

quantization. Real-Time Imaging, 2:241-247, 1996.

M. Fleury, A. C. Downton, and A. F. Clark. Pipelined parallelization of face recognition.

Machine Vision and Applications, 1997. Submitted for publication.

Wind River Systems, Inc., 1010, Atlantic Avenue, Almeda, CA. VzWorks Programmer’s

Guide, 1993. Version 5.1.

M. Edwards and J. Forrest. A practical hardware architecture to support software ac-

celeration. Microprocessors and Microsystems, 20:167-174, 1996.

K. Balmer, N. Ing-Simmons, P. Moyse, I. Robertson, J. Keay, M. Hammes, E. Oakland,
R. Simpson, G. Barr, and D. Roskell. A single chip multimedia video processor. In [EEE

Custom Integrated Circuits Conference, pages 91-94, 1994.

C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs,

NJ, 1989.

E. Verhulst. Non-sequential processing: Bridging the semantic gap left by the von Neu-

mann architecture. In IEEE Workshop on Signal Processing Systems, pages 35-49, 1997.

Transtech Parallel Systems Ltd., 17-19 Manor Court Yard, Hughenden Ave., High

Wycombe, Bucks., UK. The Paramid User’s Guide, 1993.

D. Tabak. Multiprocessors. Prentice-Hall, Englewood Cliffs, NJ, 1990.

M. Fleury, H. P. Sava, A. C. Downton, and A. F. Clark. Designing and instrumenting a
software template for embedded parallel systems. In UK PARALLEL ’96, pages 163-180.

Springer, London, 1996.

17



[20]

[21]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

M. Fleury, H. Sava, A. C. Downton, and A. F. Clark. A real-time parallel image-
processing model. In 6 International Conference on Image Processing and its Ap-

plications, volume 1, pages 174-178, 1997. IEE Conference Publication No. 443.

G. Barrett. Rescheduling communications. In J. R. Davy and P. M. Dew, editors,
Abstract Machine Models for Highly Parallel Computers, pages 281-294. O.U.P., Oxford,

UK, 1995.

K. Karhunen. Ueber lineare methoden in der wahrscheinlichtskeitsrechnung. Annals

Acad. Sci. FenniceSeries A.I, 37, 1947.

M. M. Loeve. Fonctions aleatories de seconde ordre. In P. Levy, editor, Process Stochas-

tiques et Movement Brownien. Hermann, Paris, 1948.

J. J. Gerbrands. On the relationship between SVD, KLT and PCA. Pattern Recognition,

14(1-6):375-381, 1981.

P. A. Devijver and J. Kittler. Pattern Recognition: A Statistical Approach. Prentice-Hall,

London, 1982.

A. K. Jain. A fast Karhunen-Loeve transform for a class of random processes. IFEFE

Transactions on Communications, 24:1023-1029, September 1976.

E. Oja. Principal components, minor components, and linear neural networks. Neural

Networks, 5:927-935, 1992.

P. J. Ready and P. A. Wintz. Information extraction, SNR improvement and data

compression in multispectral imagery. IEEE Trans. on Comms., 31(10):1123-1130, 1973.

M. Kirby and L. Sirovich. Application of the Karhunen-Loéve procedure for the charac-

terization of human faces. IEEE Trans. PAMI, 12(1):103-108, 1990.

H. Murakami and B. V. K. V. Kumar. Efficient calculation of primary images from a set
of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 4(5):511—

515, September 1982.

18



[31]

[32]

[33]

[35]

[36]

[37]

[38]

[39]

P. J. Vermeulen and D. P. Casasent. Karhunen-Loeve techniques for optimal processing

of time-sequential imagery. Optical Engineering, 30(4):415-423, April 1991.

J-S. Lee and K. Hoppel. Principal components transformation of multifrequency polari-
metric SAR imagery. IEEE Transactions on Geoscience and Remote Sensing, 30(4):686—

696, 1992.

L. Sousa, J. Burrios, A. Costa, and M. Picdate. Parallel image processing for transputer-
based systems. In IEE International Conference on Image Processing and its Applica-

tions, pages 33-36, 1992.

R. B. Yates, N. A. Thacker, S. J. Evans, S. N. Walker, and P. A. Ivey. An array processor
for general purpose digital image compression. IEEE Transactions of Solid-State Circuits,

30(3):244-249, March 1995.

M. Raynal and M. Singhal. Capturing causality in distributed systems. IEEE Computer,

pages 49-56, 1996.

M. T. Heath and J. A. Etheridge. Visualizing the performance of parallel programs.

IEEE Software, 8(5):29-39, 1991.

M. Fleury, A. C. Downton, A. F. Clark, and H. P. Sava. The design of a clock synchro-
nization sub-system for parallel embedded systems. IEE Proceedings Part I (Computers

and Digital Techniques), 144(2):65-73, March 1997.

M. Atkins. Performance and the i860 microprocessor. IEEE Micro, pages 2478, October

1991.

N. Sarvan, R. Durrant, M. Fleury, A. C. Downton, and A. F. Clark. Analysis prediction
template toolkit (aptt) for real-time image processing. In IEE International Conference

on Image Processing and its Applications, IPA’99, 1999. Accepted for publication.

19



Pipeline:

(1) (2)

Set size

128 256 128 256

4

10

0.73 2.58 193 4.88
0.88 3.19 206 5.37
1.02 3.59 214 581
1.12 413 227 6.24
1.28 4.80 2.40 6.73
1.39 520 2,53 7.23

1.52 574 2.64 7.70

Table 1: Timings (s) for parallel pipelines on a Paramid

486 PC running
NextStep O.S. based
on Mach micro-Kernel

Host ‘ 68030 ‘ [HOS‘ } 68030

LAN (typically Ethernet)

68030

TCP/IP protocol

7))
Serial or | network connection 2
MC68030 VME
board running VxWorks
real-time kernel
\
C
Other device boards on VME bus. ‘ ﬁ ‘
Serlal connector
| 'SLIP protocol Proxy| server
‘ 68030 ‘ ‘ 68030 ‘ ‘ 68030 ‘ ‘ 68030 ‘
Sub-net | | |

or VME bus via shared-memory network driver

Figure 1: Alternative VxWorks Configurations
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Figure 2: Data-farm Template Outline
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Figure 3: The Effect of the KLT Change of Basis on Signal and Noise (Additive)
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Thread
Covariance Image 0 ‘ Image 1 Image 2 ‘ Image 3 Image 4 R
! ! !
! ! !
1 1 1
| | |
Eigenmatrix V. Image0 ‘ Imagel  Image2 ‘ Image3  V  Imaged V
! ! 3
| ! 1
| l | |
| ! |
Transform vV ImageO Imagel V Image2 Image3 V

time

Figure 5: Ideal KLT Pipeline Timing
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