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Abstract

The Multi-Sector Algorithm (MSA) is a simplification of
the CORDIC algorithm to more closely meet the require-
ments for a real-time general Hough transform applica-
tions. The MSA can form a pipeline, and multiple angle ro-
tations are performed in parallel. The whole has been tested
on Virtex platform FPGAs to find straight edges within im-
ages. Angular resolution is incrementally scalable. Video-
rate processing is easily achieved. The ability to run in-
dependent MS units in parallel is only limited by on-chip
memory restrictions.

1. Introduction

The Hough transform (HT) [11] is frequently used to lo-
cate possibly occluded straight edges or lines in machine
vision. Each detected edge pixel in a binary image votes for
a potential edge upon which it might lie [4]. To avoid need-
ing infinite slopes for vertical edges, in the slope-intercept
method [7], the polar coordinates of an edge pixel act as in-
dices to the vote array. The HT is potentially suitable for
video-rate applications such as motion detection (by com-
parison of successive HT transformed frames) [10], but the
computational burden is high, motivating parallel and/or
hardware implementations. Notice that if gray-level values
are accumulated in the vote array then a Radon transform is
accomplished [15].

Hardware designs for the general HT have applied the
Coordinate Rotational Digital Computer (CORDIC) algo-
rithm [6] [1] to the slope-intercept method. This is because
the CORDIC computes, almost as a by-product, rectangu-
lar to polar coordinate transformations. The HT CORDIC
method proceeds by incrementing the angle of the normal
to a potential edge line segment in order to find all potential
radii. For each angle, a series of convergent micro-rotations
is generated. The series are usually unrolled to form a
micro-rotation pipeline. Look-up table (LUTs) techniques

(to establish the direction of a particular micro-rotation) and
scale factor compensations [22][5] have been investigated,
though these impact throughput and/or hardware complex-
ity.

The HT is an attractive demonstrator of CORDIC tech-
niques, such as the mixed-radix CORDIC [3]. However, it is
a noticeable feature of some hardware papers on CORDIC
HTs that no illustration of application to real images is
given. In this paper, we question whether the repeated con-
vergent cycles to generate each angle in the HT algorithm
are the most suitable and efficient way to generate votes.
Our approach arises from the observation that the angles to
be generated are not random. They are an ordered series
of calculations as the angle of the normal is successively
incremented. Therefore, rather than a convergent series of
calculations, each angle calculation can be generated itera-
tively. At the same time, the image origin is shifted to the
center. This allows the angle space to be divided into sec-
tors, so that calculation to proceed in parallel on a per-sector
basis. As the method of angle calculation does not impact
on the HT itself, the transform remains a general HT with
no differences.

By simplifying the design, chip area usage is reduced.
As there is no interdependence in calculations on edge pixel
inputs, the design can then be replicated with further par-
allelism. It turns out that on current Field-Programmable
Gate Array (FPGA) technology, the main limit to single
chip parallelism is not the HT calculation unit (which oc-
cupies less than 7% of a Virtex-II XC2V3000 [20] working
to 15-bit fixed point for 0.9o angular resolution on an image
size 256 × 256 pixels) but on-chip memory size to support
independent vote arrays.

In our adaptation of the CORDIC idea, the micro-
rotations are constant and uni-directional, while still achiev-
ing line segment detection. Re-scaling is avoided by judi-
cious choice of fixed micro-rotation size resulting in gain
approximating to one, while retaining sufficient detection
accuracy for the application. The calculations within each
sector can also be pipelined. With the search space di-



vided into equal sectors, we call these techniques the Multi-
Sector Algorithm (MSA) and a pipelined implementation
the PMSA. We demonstrate the PMSA on a standard 256×
256 pixel imagery using the Xilinx Virtex-II FPGA. The
worst-case throughput is about 30 frame/s for a dual PMSA,
with FPGA running at 50 MHz and angular resolution 0.9o.
The angular resolution of the micro-rotations is incremen-
tally tunable. We have implemented a version with 0.9o

resolution. The main trade-off for the enhanced speed with-
out scaling or convergence is an approximation to the initial
offset by shifts and adds and the approximation of the gain
factor to one, with some (limited) loss in accuracy. The ac-
curacy is also scalable as by running multiple PMSA in par-
allel, the angle range is reduced for each PMSA, resulting
in reduced propagation of gain approximation error. In our
design, as in others, an edge-detected binary image is input
and a further peak detection stage is required, which has the
effect of increasing pipeline latency. However, both edge
detection and peak detection are implementable in hard-
ware.

The remainder of this paper is organized as follows. Sec-
tion 2 explains how we have simplified the CORDIC algo-
rithm and details the MSA and PMSA method of calculating
the general HT. Section 3 reports results in terms of image
processing and performance. In Section 4, other implemen-
tations are briefly considered from a variety of aspects. Fi-
nally, Section 5 draws some conclusions.

2. Hardware Hough Transform

The generation of trigonometric functions (sines and
cosines) is one of the main barriers to implementation of the
HT in hardware. One technique is to employ LUTs [9][12],
but on the FPGA implementation intended by us, LUTs
would have a severe impact on on-chip memory usage,
given that memory is also required for vote arrays. Another
possibility is distributed arithmetic [2]. The CORDIC-
based algorithm remains attractive.

2.1. CORDIC algorithm

Consider coordinate origins at the geometrical center of
an image, then seek the length of a radius R from the origin
normal to a straight edge passing between a detected pixel
with Cartesian coordinates (X,Y ). R subtends an angle θ
so that

R = X cos θ + Y sin θ, (1)

with θ valid from 0 to 2Π.
In practice, θ is ranged from 0 to Π as the sign of R

distinguishes the position of R. Dividing through by cos θ
and with suitable trigonometric substitutions yields:

RX = (X + Y tan θ) cos θ, 0 < θ <
Π

2
,Π < θ <

3Π

2
(2)

RY = (Y−X tan θ) cos θ,
Π

2
< θ+

Π

2
< Π,

3Π

2
< θ+

Π

2
< 2Π,

(3)
which are also the basis of the CORDIC algorithm for hard-
ware calculation of trigonometric values by means of micro-
rotations. By varying θ, all possible values of R are found
for varying straight lines through invariant (X,Y ). θ can be
replaced by arctanφ, so that tan(arctanφ) = φ.

In the traditional CORDIC [1] applied in [22][5], φ =
±2−k with k = 0, 1, 2...., allowing a set of micro-rotations
to converge to a given angle. However, this requires a look-
up table to establish the direction of a micro-rotation at any
stage in the iteration and a scaling re-adjustment [5].

2.2. Constant rotation CORDIC-like algorithm

For this application, it turns out that the micro-rotations
can be uni-directional and of constant size causing a series
of angles to be generated. Setting constant k = 5 means
φ = 2−5 and the micro-rotation step-size is 1.79o. In Sec-
tion 3.2 k = 6, φ = 2−6 and angular resolution is 0.9o.)
The terms multiplied by ‘tanθ’ in (2) and (3) will result in
a simple right shift operation by six places if k = 6. The
sequence of constant size micro-rotations is defined as:

R1X(m+ 1) = R1X(m) +R1Y (m)φ (4)

R1Y (m+ 1) = R1Y (m)−R1X(m)φ, (5)

with m = 0, 1, . . . ,Mstep, Mstep being the number
of micro-rotations. The gain, cos(arctanφ), approaches
one for sufficiently small φ. However, if all is un-
changed, smaller angular resolution will result in more
micro-rotations to cover the angular range and increased
propagation of error as m approaches Mstep. Therefore,
there is a trade-off in accuracy between gain and number of
micro-rotations. Accuracy can be gained without any trade
off by decreasing the range of each set of micro-rotations
(see Section 2.5). Fig. 1 shows an example hardware cell to
calculate successive values of the micro-rotation sequence.

2.3. Multi-Sector Algorithm

The MSA uses the same micro-rotations but several cells
are employed to process the angle range and generate radii.
A simple MSA for instance, will have one cell of the type
shown in Fig. 1 for incrementing angles and a second vari-
ant cell to calculate

R2X(m+ 1) = R2X(m)−R2Y (m)φ (6)

R2Y (m+ 1) = R2Y (m) +R2X(m)φ, (7)

for decrementing angles, resulting in double the throughput.
The initial radii inputs to the two cells (refer to Fig. 2)

are calculated from the original X and Y pixel coordinates



Figure 1. Example CORDIC-like cell for cal-
culating radii values in successive micro-
rotation increments.

(relative to the image center). For the simple MST, initialize
these values with the radii corresponding to an offset of Π

4
.

This can be achieved with a series of shifts and additions to
the original pixel coordinates. To maintain sufficient accu-
racy for machine vision applications the values stored in the
R1X , R1Y , R2X and R2Y registers are 1

tan∆θ
= 1

φ
times

larger than the actual values, for example 1

φ
= 26 = 64.

Thus, one must initialize R1x = R2x from:

64×X cos(
Π

4
) = X × 64×

√
2

2
≈ 45.25×X (8)

and equivalently for R1y = R2y . As 32 + 8 + 4 + 1 + 0.25
= 45.25, the shifts and adds applied to form (8) are X <<
5 + X << 3 + X << 2 + X + X >> 2. The resulting
bit width to store the fixed-point value of the radii is 1 (sign
bit) + 8 (radii address range) + 6 (shift-add accuracy) = 15
bits.

2.4. MSA pipeline

A block diagram of an MSA is given in Fig. 3. It is
possible to form a three stage pipeline consisting of: (1)
Calculate radii; (2) Read and increment vote; (3) Write
vote back. Therefore, a further improvement in throughput
arises from a pipelined MSA (PMSA) if on-chip, dual-port
block RAMs, allowing simultaneous read and writes, are
employed to store votes. On-chip block RAMs have been
shown [19] to be an effective addition to FPGA architecture.

2.5. Multiple PMSA

By dividing up the angular range (0–360o) multiple
PMSA result in further speedup (double for double PMSA).
The calculation performed by each PMSA unit is indepen-
dent but each must be initiated at different angles in the

Figure 2. Division into four of the radii search
range, with eight regions according to the
sign of the calculated radius.

Figure 3. MSA cell for simultaneous calcula-
tion of four radii values.

range. For a double PMSA, the initial offset to the two
PMSA are respectively Π

8
and 3Π

8
.

There is a further bonus from multiple PMSAs, namely
the angle range is reduced and hence the accuracy increases
as the gain error approximation does not propagate over as
many micro-rotations. An error analysis of the gain pro-
ceeds by (say) taking the z-transform of equation pair (4)
and (5) and writing in terms of R1X(0) and R1Y (0), which
are known values.



3. Results

3.1. Image processing

The algorithm was performed on a Virtex-II XC2V3000
FPGA [20]. To check correct working, an image with a sin-
gle horizontal line, Fig. 4 was employed, with the resulting
voting array in Fig. 3.1. A logarithmic intensity function
has been employed so that smaller votes are still visible.
Notice the well-defined peaks and the characteristic sinu-
soidal wave pattern, arising from re-arranging (1) to form:

R = (X2 + Y 2)
1

2 sin(θ + tan−1(X/Y )) (9)

A standard image 256 × 256-pixel image, ”airplane”1,

Figure 4. Horizontal line image

Figure 5. Vote array for Fig. 4

Fig. 6, with clear linear features, the runway borders, was
then employed. A binary-thresholded edge image, Fig. 7,
was the input to the MSA. The voting array is captured
in Fig. 8, with the x axis running from 0 to 360o marked
off at 45o intervals and the vertical y axis ranging from 0
to 182 pixel radius. The vertical dimension allows for the
maximum radius in a 256 × 256 image. Fig. 9 is the line
image created from the voting array. All votes above 32
have been re-created as straight lines. Therefore, it should

1Available from the USC-SIPI Image Database at
http://sipi.usc.edu/database/.

be stressed that peak detection has not been applied to re-
move shorter edge segments. The plane itself has caused
some disturbance to the picture, though the runway borders
are apparent. Had the plane itself been first been removed
as the result (say) of a template matching algorithm, then
Fig. 10 would be the resulting vote array and Fig. 11 is the
line image created from the voting array. The main weak-
ness of the image is that the runway leading off to the right
is weakly represented.

3.2. Performance

The maximum radius is defined as:

Rmax =

√

X2 + Y 2

4
, (10)

assuming the origin of coordinates is in the center. For a
256 × 256 pixel image, Rmax = 181. The angle range
is 0 to 360o. The memory allocated for the angle range is
divided into eight sectors for a single MSA (16 for a double
MSA, and so on). If these sectors are mapped to different
block RAMs (BRAMs) then there is independent read and
write access to the voting array for each sector.

For a single MSA, the number of microrotations, Mstep,
needed to create a set of votes for a single pixel is given by

Mstep =
360

Ncell.8.Ares

, (11)

where Ncell is the number of MSA cells and Ares is the
angular resolution.

Consider the maximum number of clock cycles, Cmax,
to process an image, then

Cmax = Cinit + Ctrans, (12)

where Cinit is the time to initialize the vote array and
Ctrans is the time to perform an MSA. Now

Cinit ≈ (Rmax + 1)×Mstep (13)

which for a 256 × 256 pixel image with angular resolution
arctan(2−6) is 182× 50 = 9100 clock cycles. If all pixels
in an image are edge pixels then

Ctrans ≈ (Crescale +Msteps)× Isize, (14)

where Crescle is the number of clock cycles to retrieve
an edge pixel from memory, rescale the pixel to the entry
angle of the MSA cells, and initialize the pipeline of the
MSA. Isize = X × Y is the image size in pixels. Crescale
can also run in parallel with the voting loop, thus saving
some clock cycles. For the implementation running at 50
MHz on a 256 × 256 pixel image with angular resolution
arctan(2−6) = 0.9o, Crescale was six clock cycles.



The minimum frame rate, Fmin is given by

Fmin =
Sclock
Cmax

(15)

For the one PMSA cell implementation on a 256 × 256
pixel image with clock speed at 50 MHz, then Fmin ≈ 13.5
frame/s and with two PMSA cells Fmin ≈ 24.5 frame/s. If
Crescale is run in parallel with the PMSAs then Fmin ≈
30.4 frame/s. As the PMSA is compute intensive, un-
like some image-processing tasks on an FPGA Virtex-II,
e.g. [8], the clock width imposed by access to external in-
terfaces is not a limiting factor.

3.3. Resource Usage

Table 1 shows resource usage on the Virtex-II FPGA in
the implementation, from which it is clear that the main re-
striction to further parallelism is the number of dedicated
block RAMs (BRAMs). The BRAMs principally store the
vote arrays, and therefore optimization of vote array storage
is required. Currently, 10-bit counters are used for a reso-
lution of 0.9o. In addition, to simplify the design, a con-
catenation of the radii and angular address resulted in some
memory redundancy. Worst case vote counts may not be
met and there are also other opportunities to reduce storage
through counter quantization and a re-structured addressing
scheme.

Resource 1 MSA cell 2 MSA cells
BRAM 76 out of 96 84 out of 96
Slice 1,113 (7%) 1,185 (12%)
LUT 1,987 (6%) 3,487 (12%)
Flip Flop 750 (2%) 1,160 (4%)

Table 1. Resource usage by number and per-
centage on Xilinx Virtex-II XC2V3000

4. Related work

In general, comparisons between the performance of HT
implementations are not helpful as they cannot account for
changes in technology, the angular resolution, or variations
in the algorithm. For example, if the modified HT [14] is
performed then a gradient image is input causing only one
vote per oriented edge point. Since [14], there have been
many attempts to reduce computation, such as the random-
ized [21] and fast HT [13]. However, the latter two algo-
rithms are unsuitable for hardware implementation because
of their irregular structure. The general HT [7] is entirely
regular. It has also been shown in [22] that the modified

HT [14] is capable of hardware implementation by adding
units at the head of the CORDIC pipeline to calculate the
gradient from two orthogonal Sobel inputs [4].

The sequential algorithm for image size
√
N×

√
N with

an n × n parameter space takes O(nN). There have been
numerous fine-grained (systolic, SIMD mesh, and pyramid
[17]) parallel versions of the HT, as well as distributed
memory multiprocessors, with an extensive list in [3]. The
main detraction of SIMD solutions is that hardware com-
plexity can grow with the size of the image. For example, in
[15], an O(1) (constant time) algorithm on a reconfigurable
mesh is reported but at a cost of n2N processing elements.
As to actual performance, in [16], a 256 × 256 pixel HT is
reported as taking 0.13 s or 7 frame/s on the MPP SIMD
machine.

A VLSI implementation of the HT, LSI Logic’s L64250
chip [12] (using trigonometric LUTs) is reported to take
5.12 s for a 256 × 256 pixel image, which does not appear
to be competitive with an FPGA implementation except per-
haps in power usage.

Turning to CORDIC-based implementations, in [22], a
256×256 pixel image is estimated to take between 37.5 and
87.5 ms, or 26 and 11 frame/s but the design was not appar-
ently implemented. In [5], the design of [22] was modified
and was implemented on a Xilinx XC4010XL-PC84 FPGA.
The 16-bit fixed-point version over 12 iterations was able to
transform a 128× 128 pixel image with a resolution of 1.4o

at 38 frame/s. The clock speed realized was 40 MHz.
A number of variants to the CORDIC algorithm have

been proposed. In [3], a radix-4 CORDIC is considered.
As a radix-4 CORDIC requires a non-constant scaling fac-
tor — unlike the traditional radix-2 version, a scheme to
mix radix-2 with radix-4 was devised to avoid the scaling
problems. [3] also consider parallelization by splitting the
angle space. In [18], two processors are used, one to cal-
culate the angular increment and the other to complete the
calculation of the radius. As in our solution, the origin of
coordinates is at the image center. In [18], the angular space
is divided into eight sectors, allowing parallel computation
of points in each sector, by manipulation of the phase fac-
tor tan−1(X/Y ) in (9). However, the number of sectors
exploitable by the technique in [18] is restricted to eight.

5. Conclusion

Generation of the voting array is one of the principal
obstacles to achieving a real-time general Hough Trans-
form (HT) in hardware. This is because of the need to
calculate trigonometric values. The CORDIC algorithm is
one method that has already been applied to the HT on
a reconfigurable FPGA. FPGAs are well suited to image-
processing applications offering hardware parallelism and
fine-grained processing. However, in this paper we con-



sider how the basic CORDIC idea can be modified to im-
prove the throughput through constant-size micro-rotations.
The design in this paper used pipelining of edge coordinate
inputs and vote generation. Parallelism is also present by
simultaneous calculation of pixels within image sectors. As
the complexity of the design is much reduced over a pure
CORDIC scheme the actual restriction on platform FPGAs
is the number of on-chip RAM blocks. As a significant
problem is the size of the vote array, further work is to con-
sider reducing this requirement by (say) quantization. Fi-
nally, a full error analysis is of interest for applications for
which this is appropriate.
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Figure 6. 256× 256 "plane" image Figure 7. Thresholded edge image

Figure 8. Voting array from Fig. 7 Figure 9. Line image of Fig. 7

Figure 10. Voting array after prior removal of the
’plane

Figure 11. Line image after prior removal of the
’plane


