
Designing and Instrumenting a
Software Template for Embedded

Parallel Systems

M� Fleury

Dept� of Electronic Systems Engineering� Essex University

Colchester� U�K

H� P� Sava

Dept� of Electronic Systems Engineering� Essex University

Colchester� U�K

A� C� Downton

Dept� of Electronic Systems Engineering� Essex University

Colchester� U�K

A� F� Clark

Dept� of Electronic Systems Engineering� Essex University

Colchester� U�K

Abstract

This paper considers the design of a reusable software template for a par�
allel data�farm which uses demand�based load�balancing� A feature of the
farm is integral instrumentation� A design example is given for a hybrid
processor message�passing machine �the Paramid� in which monitoring
is accomplished by an instrumented interface program� Other aspects of
the design are use of bu�ering to mask communication latency� an asyn�
chronous multicast provision� and a controlled interface to the worker
functions� Trace material is discussed from two examples when the tem�
plate design was used to monitor real�time� continuous��ow applications�
The template is a component of the Pipelined Processor Farm �PPF�
methodology�

� Introduction

This paper describes the design of a software �template� which supports con�
struction of embedded parallel applications that utilise multiple data farms� A
template restricts the scope of the software thereby making the design easier
to develop� The data farm is intended to enable rapid prototyping of applic�
ations developed according to the Pipelined Processor Farm �PPF� methodo�
logy ��	� PPFs are suitable for the class of continuous�
ow embedded systems�
which commonly have a time and�or ordering constraint imposed upon the
output� The methodology proposes three forms of decomposing the workload
in a component farm� by means of temporal multiplexing through algorithmic
parallelism or through data parallelism� Demand�based farming utilising data
parallelism enables the pipeline traversal latency to be reduced and permits

�

incremental scaling of the farm throughput� It is therefore more
exible and
popular as a design technique than the other two forms of decomposition� and
hence provides the basis of this initial template design�

Unlike some other template designs ��� �	� our design includes instrumenta�
tion as an integral part of the software� Experience ��	 shows that instrument�
ation is di�cult to include at a later stage and that a static design will need
to be tuned after an initial implementation ��	� In Tmon ��	 instrumentation is
included but requires a hardware monitor to provide time pulses� which may
improve the accuracy but naturally limits the portability� Tmon also requires
user annotation of the source code� whereas the present system intercepts com�
munication events by means of a monitoring sub�system� implemented as part
of the template� The PIE Environment ��	 includes instrumentation provision
in software but is less constrained in its applicability and is aimed at machines
supporting a global address space� The concept of providing performance eval�
uation facilities as an integral part of the environment is present in Jade ��	�
though otherwise the similarity stops as this environment attempts to hide the
details of parallelism from the programmer�
The design principles for our data�farm template can be summarized as�

� a demand�based load�balancing algorithm

� latency regulation by the use of bu�ering� which is transparent to the
message size and type

� a multicast mechanism �on a per�farm basis�� which can be called on at
any time

� graceful termination� which also allows a reset for recon�guration pur�
poses

� a controlled interface to the functions o�ered by each worker process

� instrumentation of all communication events�

These criteria are developed in succeeding sections� Though the major part of
this paper is couched in the form of a case study� in fact most of the material
presented is general �i�e�� Sections ���� ���� ��� � ���� and can be transferred to
other message�passing environments� Reference is made to two applications� a
handwritten postcode recognition application and an H���� image coder paral�
lelization� Output from a trace visualizer for the two applications is included in
Section �� The �nal part of the paper� Section �� summarizes and draws some
conclusions�

� An Instrumented Template on a Hybrid
Machine

The initial target architecture for this implementation was the Paramid paral�
lel processor from Transtech Ltd� ��	 which is a distributed�memory message�
passing machine built up from twin�processor modules� In our case� we were

using an eight�module machine� with transputer communication processor �run�
ning at a nominal ��MHz� with link speed set to ��Mb�s and �Mbytes RAM�
and i��� computation engine ���MHz and ��Mbytes RAM�� From the user
perspective� the machine appears as a transputer machine with attached accel�
erator onto which jobs are allotted on a �rst�come��rst�served basis by a host�
based scheduler� The i����XP is a superscalar RISC processor with pipelining of
the integer and
oating point computational streams� The i��� ��	 is primarily
suited to the processing of regular structures� such as matrices� Interprocessor
communication is e�ected in the �rst instance by the i��� interrupting the
transputer �via the transputer event pin� to signal a request� The transputer
inspects a common memory area in order to service the request� releasing a
software lock after ful�lling the request�

��� System Software Organization

VCS
VCS

VCS

Application

Program

Application

Program
Application

Program

RTE
Interface
program RTE

Interface
program

RTE
RTE Interface

program Interface
program

VCS

Application

Program

To the host

i860 i860

i860i860

Transputer

TransputerTransputer

Transputer

Multiplexor

Overlapped memory

RTE = Run-Time Executive

Farmer 2

Farmer 1

Worker 1 Worker 2

VCS = Virtual Channel System

Figure �� System Software

The existing system software �Figure �� includes servicing of run�time I�O

requests on all modules by means of a run�time executive �RTE�� I�O is mul�
tiplexed onto the SCSI link to the host� The multiplexor channels are set up
conveniently by means of a virtual channel system �VCS� which acts on each
processor as an external communication link sentinel� VCS software is import�
ant in limiting the complexity of the communication software that is provided
by the application programmer but it also makes direct communication as
required for multicasts awkward to guarantee �Section ����� Ideally� one would
like to have both virtual and actual communication in the same application�
The transputer provides e�cient internal concurrency by manipulation of a
process stack ���	 but only one process running on the i��� can communicate
with the system interface program running on the transputer� This restric�
tion neatly meets the design methodology in that one process can be written
with a public interface and a set of protected services� which thereby take the
place of multiple processes on the i��� �Section ����� Note that �L Parallel �C�
and Inmos Parallel �C� for the transputer both distinguish between tasks on
the same processor� which may communicate only by channels� and processes
�equivalent to threads ���	 or light�weight processes� which are internal to tasks
and can communicate either by common memory or by channels�

Two versions of the data�farming template are necessary for this machine�
one in which all application processes are sited on the i���s and another in
which the data�farmers are placed on transputers� The precise arrangement is
application�speci�c as it depends on the degree of centralized processing neces�
sary� In the H���� encoder application ���	 there were serial bottlenecks which
made it important to place the data�farmers on the i���s� this produced a per�
formance gain of a factor of � compared with placing the farmer processes on a
transputer� In contrast� the three data farmers used in the postcode recognition
application ���	 were all placed on transputers as their computational load was
small� This still allowed the real�time� ordering and latency constraints of the
postcode speci�cation to be met�

��� The Generic Worker Module

In designing the worker an initial consideration is the nature of the message
tra�c� Messages occur in two parts� a tag and the body of the message�
The tag must include� the size of the message to follow a type indicating
whether a message is a multicast or a request for processing and a message
number� The message number is intended to signal to the receiver which data
structure to position for the accommodation of the second part of the message�
It might also be used for other purposes� The body of the message should
include a function number as the �rst �eld of the message� but otherwise the
message record structure is undetermined� If a sequential version of a program
exists� it may involve excessive data movements to form messages into logical
message structures� The application programmer will need to balance utility
with complexity� The potential for a large number of di�erent messages is
a reason for con�ning oneself to a rigid message format� Unlike occam� the
�C� computer language does not o�er guidance in this respect� C�� has the

di�culty that there is not yet an ISO standard� Each work request message
is serviced by one worker�module function �Figure ��� For reasons explained
in Section ���� multicast messages generate no processing� In �C� it is possible
to use an array of function pointers to which the function number forms an
index� Though not entirely satisfactory� data and parameters are passed to the
function as globals� This means that each function can be referenced simply
by a number� From the �gure it will be seen that the worker module is divided
between a public interface and a private part into which di�erent functions can
be slotted� This makes it possible to extract the functions from sequential code
constructed with structured programming and place them into the slots�

Global data-structures

Terminate

Function one

Function two

Request type one

Request type two

Request type n

Messages

Reply type one

Reply type two

Reply type n

Public

Private

Generic worker

Control Interface

(Broadcasts put

data into global

memory area only,

work requests will

call functions)

Figure �� The Worker Module

��� The Bu�er Design

While there has been considerable exploitation of parallel slackness �by means
of concurrent or pseudo�parallel processes� as a way of masking communica�
tion latency� rather less attention has been given to using bu�ers for the same
purpose ���	� Historically this situation arises because the XPRAM model ���	
was part of an attractive plan for a universal programmer�s model for par�
allel machines that could work on the two broad classes of MIMD� shared�
and distributed�memory machines� Providing internal concurrency may not
however be cost�free� If overlapped register windows are used� the cost of con�
text switching may become large as the register set is exhausted� If a process

is descheduled on one processor at a time when a process on another processor
wishes to communicate� multiple delays can occur ���	� Bu�ering on the other
hand was an important part of an early pipelined design where there are non�
deterministic
ows between the pipeline stages ���	� There is a substantial
literature on queueing theory which can be applied selectively to particular
bu�ering problems ���	�

At least one buffer slot is kept

empty of work requests so as

to avoid the possibility of

deadlock if a broadcast should

arrive.

The number of

buffer slots is

experimentally

determined from

the work-flow

for an application.

Buffer-in

Contention-resolution

Buffer-out

Circular buffer

Multicast to

another worker

Virtual data

channel

Direct

multicast

channel

* Buffer-in and buffer-out are threads.

* The circular buffer is shared memory

* The slot-sizes can be dynamically resized

Figure �� A Generic Bu�er

In the template design� in�going �Figure �� and out�going bu�ers service
each application process� Additionally� bu�ers are placed between the stages
of the pipeline� All bu�ers have the same generic form though they may di�er
in the number of bu�er slots� To avoid internal data movements a shared
address space is needed� The control of access contention is a standard problem
in concurrency ���	� On transputers� software semaphores can be utilised by
missing out any assembly language statement which might allow a context
switch by the �rmware� So that the bu�er slot size should remain transparent
to the message arrival size an initial bu�er slot size is set which can be expanded
by dynamic memory allocation on the arrival of too large a message� Separate
bu�er slots are kept for tags� otherwise there is a danger of the small slots
needed for tags being expanded to provide for larger messages� At present�
there is no means of reducing the bu�er size if that size should� in the general
case� turn out to be too large� Diagnostic software for memory usage �such
as Purify ���	 on sequential� possibly multi�threaded� machines� is not readily
available for parallel machines� though one would need to expand the basic
facilities of malloc debugging and array bound checking in order to check
inter�task memory usage interaction� To avoid the possibility of deadlock if
a series of multicast message were to arrive at asynchronous intervals� at least
one extra bu�er slot is provided over and above the number of messages sent

out at loading time� This method is a variant of an algorithm which is proven
in ���	� Trust in the implementation was established by sending multicasts at
randomly �with a uniform distribution� determined intervals against a backdrop
of continuous message tra�c� The number of multicasts at each distribution
time was also randomly determined�

��� The Multicast Sub�System

Interface

Program

Interface

Program

Interface

Program

Interface

Program

Buffer-inBuffer-in

Buffer-in Buffer-in

Buffer-outBuffer-out

Buffer-out Buffer-out

To host

Transputer

Transputer

Transputer

Virtual channel

Physical link

Transputer

Farmer 2Farmer 1

Broadcast to other workers

Worker modules

Multicast link

(one physical hop only)

Figure �� The Multicast Sub�System

In the expanded PPF methodology� multicasts can occur within each pro�
cessor farm� Broadcasts �such as for initial parameter passing� obviously occur
by inter�farmer communication� A multicast reduces message tra�c� though
in fact it breaks the paradigm of preventing worker to worker communication�
When a VCS is employed it becomes necessary to specify point�to�point links
and� if need be� set weightings to guide channel placement on the physical links
available� The use of a tree�topology makes this easy to do but since a farm
is not limited to a particular topology this is not generally the case� The tree
topology also makes routing of multicasts trivial to arrange� since the in�going
bu�er need �know� only how many ports it should send the multicast out to�

Other topologies may require the use of time�to�live �TTL� counters to avoid
endless circulation� If multicasting is to be asynchronous then the possibil�
ity exists of a multicast being blocked because of a circuit between farmer and
worker� In Section ��� an extra bu�er slot is prescribed� but two further restric�
tions are needed to guarantee deadlock avoidance� a worker process can only
act as a sink of multicast messages and each work request can be met by one
processed�work reply�
An alternative is barrier synchronization ���	� but this option is rejected because
of the overheads� Either all messages have to be absorbed by the farmer before
broadcasting� in which case a per�worker process message count is needed� or
a supervisory kernel is needed to wait for all workers to reach a barrier point�

��� The Monitoring Sub�System

Interface

Program

Interface

Program

Interface

Program

Interface

Program

Monitor

To host

Transputer

Transputer

Transputer

Transputer

Virtual channel

Physical link

Figure �� The Monitoring Sub�System

In the template version in which all application processes are placed on
i���s� a monitor process synchronizes the clocks of all processes �Figure �� by
means of virtual channels� The monitor process can be placed on any processor�
which avoids overloading the processor directly linked to the host� Virtual links
are su�cient as the software global clock relies on the relative time di�erences
between local clocks and a centrally maintained clock in order to synchronize to
the central clock� Optionally at the start and de�nitely at the end� the monitor
process synchronizes with the master data�farmer� at which time trace collec�
tion occurs� If transputer�based farmers are employed� the monitor process can
be subsumed in the farmer� This is less satisfactory if the objective is to provide

transparent monitoring� as the communication primitives must directly make
the trace� PICL ���	 communication calls were mimicked for this eventuality�
In fact� the PICL trace �le format ���	 is also used as this enabled us to test
the post�mortem output on the ParaGraph visualizer ���	� The PICL format
includes a broadcast �eld but does not include multicast� which is understand�
able as the destinations are di�cult to specify if the record size is restricted
but which made it necessary to emulate multicasts by creating multiple message
records in the trace �le� Multicasts were stamped with the source and a code
not used elsewhere� Post�processing changed the multicast message to a set of
messages with the same timestamps but di�erent destinations �Paragraph does
not assume a monotonic clock�� Initialization and termination messages could
also be removed at post�processing time�

Application process

Kernel

Trace recorder

Synchronized clock

Command-processing

Time
request

Time reply

Global
time

Trace-file

Over-lapped memory

Terminate

I/O request etc.

request
Channel

Data supply

Memory
mapped clock

Spin-lock

contention control

i860Transputer

Request

Reply

Library calls
destination

Message

(Weakly-

Return trace

file, which is

then merged

into global file.

* Command-processing,

 trace-recorder and

 synchronized clock and

 process monitor are threads

* Communication within the transputer

is by means of internal channels.

(trace is returned on

receipt of a termination)

Local microsecond

timer

Process-monitor

(low-priority)shared data)

Figure �� The Monitoring Layout

The interface program was enhanced with a trace recorder and synchronized
clock process �Figure ��� To substitute the new interface program the applica�
tion object code is booted onto the i��� network and in a second loading phase
the transputers are booted up� The interface program then restarts the i����
The local clocks are updated by periodic pulses from the monitor� An adjust�
ment algorithm is used to compensate for local clock drift� On receipt of a
command from the i��� application program� a trace record is also generated�
timestamped by a call to the local clock� All the processes mentioned run at
high�priority as it is important to service the i���� Where a trace is made on a

transputer�based process the clock should run at high priority so as to reduce
the interrupt latency� which for a single high priority process is �� processor
cycles ���s�� If need be an additional process is run at low priority ���	 with
the purpose of monitoring processor activity� The process simply counts each
time it is activated before descheduling itself� If the processor�monitor is called
relatively frequently the processor can be assumed to be relatively idle� Internal
monitoring of processes is not necessary if there is limited competition for the
processor�s time� If the interface program could determine the destination or
source of a message by its contents these arrangements would be enough� At
present� the communication primitive on the i��� is augmented to include these
details� �The Paramid shared�memory data structure can be changed usually
without disturbing the pre�compiled kernel routines��

The synchronization algorithm� discussed in detail in ���	� involves sending
three messages� Unlike a generalized tracing system� initiation and subsequent
maintenance of the clocks can be performed from a central point� the monitor
process� In order to reduce disruption to the pattern of messages during nor�
mal working� all worker processes are synchronized at approximately the same
time by a round�robin poll� The monitor computes the relative time di�er�
ence between an averaged central time and the local times� The local clocks
will receive the estimated di�erence at a later time� Between synchronization
points� local clocks are adjusted by a local estimate of the relative drift between
the clocks� Because crystal clocks are used linear drift is a good approximation
�for experimental evidence see ���� �	�� The interval between synchronization
pulses� before drift causes an error greater than the resolution of the intended
visualizer� is calculated by an heuristic adaptation of a method due to ���	� No
ordering errors were generated for the postcode or H���� applications when the
trace �les were fed through ParaGraph�s consistency checks though the runs
lasted for several minutes� The time taken up by the clock synchronization
messages was in the region of �� for an application with mean per�message
computation time of ���s for ���� messages� Larger mean computation times
�with the times forming a truncated Gaussian distribution� result in a lower
percentage cost�

��� Other Features

Correct termination of the farm is necessary both for the collection of outstand�
ing results and the gathering in of trace �les� It is anticipated also that the
farm may need to be recon�gured if the workload alters during the course of a
run� On termination� the data farmer employs a sink process� which is broadly
in line with the methods discussed in ���	� The �rst function in the worker
modules is reserved for termination�

Pipelines are developed in an incremental fashion by adding one farm at a
time� To allow a farm to be developed in isolation� source and sink processes
may be needed� These process stubs collect �les that can be used as a com�
parison with a correctly�running sequential version� If a feedback path exists
then this development cycle may not be possible� as was discovered with the

H���� encoder� However� for complex systems it is strongly recommended that
an incremental testing procedure is thought out before commencing�

The implementation of the guarded indeterminate communication operator
in the �rmware of the transputer favours those channels found �rst in order
of textual declaration� To provide �fair� selection of input channels� a chan�
nel shu�ing routine is provided� Experiment shows that for demand�based
farming� avoiding locking out worker requests does improve performance when
requests are closely synchronized�

� Analysing the Results from Two Real�Time
Systems

Our goal in providing visualization as a built�in feature was to diagnose the com�
munication behaviour for di�ering regimes of the parallel application� Accuracy
is not of primary concern for a top�down approach to performance tuning� but
it was apparent that an accurate trace could also serve to debug an application
�at a future date�� Presently� real�time debugging messages can be turned on
at the interface program�

Figure �� Postcode Diagnostics

��� A Postcode Recognition System

The postcode recognition application is intended to read automatically hand�
written British postcodes in time for the envelopes to be coded with the correct
postcode �using a phosphorescent dot code� as they reach the end of a mech�
anical conveyor belt� Diagnostic output from the tail end of the application
from the �nal dictionary search farmer �master �� is shown in Figure �� The
throughput easily meets the speci�cation even when a trace is included ������
postcodes�sec� with trace and ����� postcodes�sec� without�� There is no
direct comparison because due to the number of trace records generated the

run for a trace was limited to ��� postcodes� If one of the processes� in this
case the initial postcode image extractor� sends a relatively large number of
short messages it will �ll its trace bu�er up quickly� At visualization time the
display can be cluttered by messages from verbose processes� though this may
be solved by post�processing the trace �le�

Figure �� Animation of the Postcode Application

In the example chosen� there are three stages to the pipeline� The �rst pre�
processing farm has three workers �processors �� �� � �� and an initial image
extractor �processor ��� with three workers �processors �� �� � �� in the classi�
�cation stage and one for the dictionary stage �processor ���� The arrangement
is shown in a screen shot from ParaGraph�s animation display �Figure ��� Note
that� though the Paramid has eight modules� the three farmers are placed on
transputers� giving eleven processes in all� Less clear is Figure �� showing a
time�space display at full magni�cation� Paradoxically� because the particu�
lar partition of the pipeline kept the processors running with limited idle time
the display is cluttered� Had the bu�er processes also been instrumented the
impression would be cramped further� The trace does not show the operation
of system software� which in some cases might be helpful� As communica�
tion is taking place simultaneously at various stages of the pipeline there is a
good overlap� ParaGraph�s display is not proportionate to the time taken by
the application but is dependent on the display exigencies �as naturally some
applications would take too long to display�� The information from a display of

the type in the �gure gives a broad�brush impression but for some applications
tra�c�
ow statistics would need to be extracted from the trace as a basis for a
complementary analytic analysis�

Figure �� Time�Space Display of the Postcode Application

Processor 0

Farmer 1 &

Farmer 2

Processor 4

Worker 2

Farm 2

Farm 1

Farm 3

Processor 3

Worker 1

Processor 1

Worker 2

Processor 2

Worker 4

Worker 3

Worker 1

Processor 5 Processor 6

Processor 7

Farmer 3

Figure ��� H���� Physical Layout

��� The H���� Video Encoder

The H���� encoder� which is a standardized algorithm� is intended for real�time
encoding of video frame sequences for very low bit�rate videophones or video
conferencing ���	� The H���� encoder was tested using three physical farms�
However� because of the sequencing constraints imposed by the algorithm two of
the data�farmers were combined into one� leading to the physical arrangement
portrayed in Figure ��� Farm � has four workers� farm � has two workers and
the worker on farm � is actually the farmer�

Figure �� shows a portion of a trace for a typical run� The slope of the
lines indicates the direction of travel� Unfortunately� for short messages even
at highest magni�cation this is not apparent� as the �rst message to processor
� shows� This is a tag message� with the body of the message following later�
Running diagonally across the �gure to meet at processor � are the messages
from the �rst worker set� which farmer � cannot respond to until it has received
work back �in the guise of farmer �� from the second farm� The processor�
monitor revealed a ��� idle time� The three farm arrangement was later aban�
doned in favour of a simpler setup�

Figure ��� Time�Space Display for H����

Because ParaGraph was intended for a hypercube machine it gives the prin�
cipal topologies that can be embedded in a hypercube� The hypercube display
�Figure ��� is helpful in the respect that non�hypercube communication is obvi�
ous on a colour screen� Thus� one can see whether a port would succeed�
Though the range of displays and the display options o�ered by ParaGraph is
very convenient and cost�e�ective� a more focussed approach would be helpful�
ParaGraph is too unconstrained� o�ering the user limited guidance� which is a
point also made in ���	� From the PPF perspective� construction of multiple
tree topologies would be useful� showing message
ow constrictions� If the dis�
plays were written in a language that was in the �rst instance interpreted �such
as Java ���	� then display prototyping would be quicker� A further advantage
is that the display formats could be user modi�able� without the extensive

parameterization of the X Window system�

Figure ��� Hypercube Display Screen Shot

� Conclusion

This paper has described the design of a farm template which includes soft�
ware instrumentation as an integral part� The template is at a prototype stage
and does not include measures to reduce the trace
ow �such as semantic com�
pression� throttling of the
ow or user indication of events of concern�� The
principles behind the design of the template have been tried out in two applic�
ations involving a pipelined design� Interim results are shown in the form of
trace displays� Data for the displays are collected by interface processes which
are largely transparent to the application source code� The template has been
constructed upon object�oriented design principles� which means that rather
than produce generalized software all software consists of a collection of self�
contained building blocks� The worker module with its controlled interface
and private functions is not unlike earlier approaches� for instance the Actors�
model ���	� It has been necessary to include a per�farm asynchronous multicast
facility� Trace visualization is modi�ed so as to add multicasts� The displays
can be used to show communication tra�c
ow� The partition of the pipeline

is then adjusted accordingly� On the micro level the expected tra�c
ow is
used to balance memory requirements for bu�ering� which is also an essential
part of the template design� A customized visualizer� capturing the features
of the PPF method� is a future intention� A template for the other two par�
allel decomposition paradigms also may be part of forthcoming work� Finally�
if �repeatable� runs can be achieved as part of a debugging cycle ���	 then an
integrated parallel debugger can share the timing data�

Acknowledgement

This work is being carried out under EPSRC research contract GR�K�����
�Portable software tools for embedded signal processing applications� as part
of the EPSRC Portable Software Tools for Parallel Architectures directed pro�
gramme�

References

��	 A� C� Downton� R� W� S� Tregidgo� and A� C�uhadar� Generalized paral�
lelism for embedded vision applications� In A� Y� Zomaya� editor� Parallel
Computing� Paradigms and Applications� pages �������� Thomson� Lon�
don� �����

��	 S� Ahmed� N� Carriero� and D� Gelernter� The Linda program builder� In
A� Nicolau� D� Gelernter� T� Gross� and D� Padua� editors� Advances in

Languages and Compilers for Parallel Processing� pages ������ Pitman�
London� �����

��	 D� Feldcamp and A� Wagner� Using the Parsec environment to implement
high�performance processor farm� In ��th Annual Hawaii International

Conference on System Sciences� pages �������� �����

��	 D� A� Reed� Performance instrumentation techniques for parallel systems�
Lecture Notes in Computer Science� ������������ �����

��	 J� Jiang� A� Wagner� and S� Chanson� Tmon� A real�time performance
monitor for transputer�based multicomputers� In D� L� Fielding� editor�
Transputer Research and Applications �� pages ������ IOS� Amsterdam�
�����

��	 Z� Segall and L� Rudolph� PIE� A programming and instrumentation envir�
onment for parallel processing� IEEE Software� pages ������ November
�����

��	 M� C� Rinard� D� J� Scales� and M� S� Lam� Jade� A high�level machine�
independent language for parallel programming� IEEE Computer� pages
������ June �����

��	 Transtech Parallel Systems Ltd�� ����� Manor Court Yard� Hughenden
Ave�� High Wycombe� Bucks�� UK� The Paramid User�s Guide� �����

��	 M� Atkins� Performance and the i��� microprocessor� IEEE Micro�
page ��� October �����

���	 D� A� P� Mitchell� J� A� Thompson� G� A� Manson� and G� R� Brooks�
Inside the Transputer� Blackwell Scienti�c Publications� Oxford� �����

���	 A� D� Birrell� An introduction to programming with threads� Technical
report� Digital Systems Research Center� ��� Lytton Avenue� Palo Alto�
Cal�� ����� Research Report ���

���	 H� P� Sava� M� Fleury� A� C� Downton� and A� F� Clark� A case study in
pipeline processor farming� Parallelising the H���� encoder� ����� In this
volume�

���	 A� C�uhadar and A� C� D� Downton� Structured parallel design for embed�
ded vision systems� An application case study� In Proceedings of IPA���

IEE International Conference on Image Processing and Its Applications�
pages �������� July ����� IEE Conference Publication No� ����

���	 W� N� Rea� Performance of task farming with transputers� In T� S� Durrani�
W� A� Sandham� J� J� Soraghan� and S� M� Forbes� editors� Applications
of Transputers �� pages �������� IOS� Amsterdam� �����

���	 L� G� Valiant� General purpose parallel architectures� In J� van Leeuwen�
editor� Handbook of Theoretical Computer Science� volume A� pages ����
���� Elsevier� Amsterdam� �����

���	 R� H� Arpaci� A� C� Dusseau� A� M� Vahdat� L� T� Liu� T� E� Anderson� and
D� A� Patterson� The interaction of parallel and sequential workloads on a
network of workstations� In ACM Sigmetrics Conference on Measurement

and Modelling of Computer Systems� pages �������� ACM� May �����

���	 S� Yalamanchili and J� K� Aggrawal� Analysis of a model for image pro�
cessing� Pattern Recognition� ����������� �����

���	 P� J� B� King� Computer and Communication Performance Modelling�
Prentice Hall� New York� �����

���	 G� R� Andrews� Paradigms for process interaction in distributed programs�
ACM Computing Surveys� ������������ �����

���	 R� Hastings and B� Joyce� Purify� In Winter Usenix ��� Conference� �����
Preprint�

���	 A� W� Roscoe� Routing messages through networks� An exercise in dead�
lock avoidance� In T� Muntean� editor� �th Occam User Group Technical

Meeting� pages ������ IOS� Amsterdam� �����

���	 H� F� Jordan� Problems in characterizing barrier performance� In M� Sim�
mons� R� Koskela� and I� Bucher� editors� Instrumentation for Future Par�

allel Computing Systems� pages �������� ACM� New York� �����

���	 G� A� Geist� M� T� Heath� B� W� Peyton� and P� H� Worley� A user�s
guide to PICL� a portable instrumented communication library� Technical
report� Oak Ridge National Laboratory� Oak Ridge� TN� USA� August
����� Report ORNL�TM�������

���	 P� H� Worley� A new PICL trace �le format� Technical report� Oak Ridge
National Laboratory� Oak Ridge� TN� USA� September ����� Report
ORNL�TM�������

���	 M� T� Heath and J� A� Etheridge� Visualizing the performance of parallel
programs� IEEE Software� ����������� �����

���	 A� Bauch� T� Kosch� E� Maehle� and Obel oer� The software�monitor
DELTA�T and its use for performance measurements of some farming vari�
ants on the multi�transputer system DAMP� Lecture Notes in Computer

Science� ���������� ����� Proceedings of CONPAR ��� � VAPP V�

���	 M� Fleury� A� C� Downton� A� F� Clark� and H� P� Sava� The design of a
clock synchronization sub�system for parallel embedded systems� ����� In
preparation�

���	 R� Cole and C� Foxcroft� An experiment in clock synchronization� The

Computer Journal� �������������� �����

���	 T� H� Dunigan� Hypercube clock synchronization� Concurrency� Practice
and Experience� ������������� May �����

���	 P� H� Welch� Graceful termination ! graceful resetting� In Bakkers A��
editor� ��th Occam User Group Technical Meeting� IOS� Amsterdam� �����

���	 C� Pancake� Visualization techniques for parallel debugging and
performance�tuning tools� In A� Y� Zomaya� editor� Parallel Computing�
Paradigms and Applications� pages �������� Thomson� London� �����

���	 J� Gosling and H� McGilton� The Java language environment� Technical
report� Sun Microsystems� Inc�� ���� Garcia Avenue� Mountain View� Cal��
�����

���	 G� Agha� C� Houck� and R� Panwar� Distributed execution of Actor pro�
grams� In U� Banerjee� D� Gelernter� A� Nicolau� and D� Padua� editors�
Languages and Compilers for Parallel Computing� pages ����� Springer�
Berlin� ����� Lecture Notes in Computer Science Volume ����

���	 T� J� LeBlanc and J� M� Mellor�Crummey� Debugging parallel programs
with instant replay� IEEE Transactions on Computers� ��������������
April �����

