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Abstract

This paper considers the design of a reusable software template for a par�
allel data�farm which uses demand�based load�balancing� A feature of the
farm is integral instrumentation� A design example is given for a hybrid
processor message�passing machine �the Paramid� in which monitoring
is accomplished by an instrumented interface program� Other aspects of
the design are use of bu�ering to mask communication latency� an asyn�
chronous multicast provision� and a controlled interface to the worker
functions� Trace material is discussed from two examples when the tem�
plate design was used to monitor real�time� continuous��ow applications�
The template is a component of the Pipelined Processor Farm �PPF�
methodology�

� Introduction

This paper describes the design of a software �template� which supports con�
struction of embedded parallel applications that utilise multiple data farms� A
template restricts the scope of the software thereby making the design easier
to develop� The data farm is intended to enable rapid prototyping of applic�
ations developed according to the Pipelined Processor Farm �PPF� methodo�
logy ��	� PPFs are suitable for the class of continuous�
ow embedded systems�
which commonly have a time and�or ordering constraint imposed upon the
output� The methodology proposes three forms of decomposing the workload
in a component farm� by means of temporal multiplexing through algorithmic
parallelism or through data parallelism� Demand�based farming utilising data
parallelism enables the pipeline traversal latency to be reduced and permits

�



incremental scaling of the farm throughput� It is therefore more 
exible and
popular as a design technique than the other two forms of decomposition� and
hence provides the basis of this initial template design�

Unlike some other template designs ��� �	� our design includes instrumenta�
tion as an integral part of the software� Experience ��	 shows that instrument�
ation is di�cult to include at a later stage and that a static design will need
to be tuned after an initial implementation ��	� In Tmon ��	 instrumentation is
included but requires a hardware monitor to provide time pulses� which may
improve the accuracy but naturally limits the portability� Tmon also requires
user annotation of the source code� whereas the present system intercepts com�
munication events by means of a monitoring sub�system� implemented as part
of the template� The PIE Environment ��	 includes instrumentation provision
in software but is less constrained in its applicability and is aimed at machines
supporting a global address space� The concept of providing performance eval�
uation facilities as an integral part of the environment is present in Jade ��	�
though otherwise the similarity stops as this environment attempts to hide the
details of parallelism from the programmer�
The design principles for our data�farm template can be summarized as�

� a demand�based load�balancing algorithm

� latency regulation by the use of bu�ering� which is transparent to the
message size and type

� a multicast mechanism �on a per�farm basis�� which can be called on at
any time

� graceful termination� which also allows a reset for recon�guration pur�
poses

� a controlled interface to the functions o�ered by each worker process

� instrumentation of all communication events�

These criteria are developed in succeeding sections� Though the major part of
this paper is couched in the form of a case study� in fact most of the material
presented is general �i�e�� Sections ���� ���� ��� � ���� and can be transferred to
other message�passing environments� Reference is made to two applications� a
handwritten postcode recognition application and an H���� image coder paral�
lelization� Output from a trace visualizer for the two applications is included in
Section �� The �nal part of the paper� Section �� summarizes and draws some
conclusions�

� An Instrumented Template on a Hybrid
Machine

The initial target architecture for this implementation was the Paramid paral�
lel processor from Transtech Ltd� ��	 which is a distributed�memory message�
passing machine built up from twin�processor modules� In our case� we were



using an eight�module machine� with transputer communication processor �run�
ning at a nominal ��MHz� with link speed set to ��Mb�s and �Mbytes RAM�
and i��� computation engine ���MHz and ��Mbytes RAM�� From the user
perspective� the machine appears as a transputer machine with attached accel�
erator onto which jobs are allotted on a �rst�come��rst�served basis by a host�
based scheduler� The i����XP is a superscalar RISC processor with pipelining of
the integer and 
oating point computational streams� The i��� ��	 is primarily
suited to the processing of regular structures� such as matrices� Interprocessor
communication is e�ected in the �rst instance by the i��� interrupting the
transputer �via the transputer event pin� to signal a request� The transputer
inspects a common memory area in order to service the request� releasing a
software lock after ful�lling the request�

��� System Software Organization
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Figure �� System Software

The existing system software �Figure �� includes servicing of run�time I�O



requests on all modules by means of a run�time executive �RTE�� I�O is mul�
tiplexed onto the SCSI link to the host� The multiplexor channels are set up
conveniently by means of a virtual channel system �VCS� which acts on each
processor as an external communication link sentinel� VCS software is import�
ant in limiting the complexity of the communication software that is provided
by the application programmer but it also makes direct communication as
required for multicasts awkward to guarantee �Section ����� Ideally� one would
like to have both virtual and actual communication in the same application�
The transputer provides e�cient internal concurrency by manipulation of a
process stack ���	 but only one process running on the i��� can communicate
with the system interface program running on the transputer� This restric�
tion neatly meets the design methodology in that one process can be written
with a public interface and a set of protected services� which thereby take the
place of multiple processes on the i��� �Section ����� Note that �L Parallel �C�
and Inmos Parallel �C� for the transputer both distinguish between tasks on
the same processor� which may communicate only by channels� and processes
�equivalent to threads ���	 or light�weight processes� which are internal to tasks
and can communicate either by common memory or by channels�

Two versions of the data�farming template are necessary for this machine�
one in which all application processes are sited on the i���s and another in
which the data�farmers are placed on transputers� The precise arrangement is
application�speci�c as it depends on the degree of centralized processing neces�
sary� In the H���� encoder application ���	 there were serial bottlenecks which
made it important to place the data�farmers on the i���s� this produced a per�
formance gain of a factor of � compared with placing the farmer processes on a
transputer� In contrast� the three data farmers used in the postcode recognition
application ���	 were all placed on transputers as their computational load was
small� This still allowed the real�time� ordering and latency constraints of the
postcode speci�cation to be met�

��� The Generic Worker Module

In designing the worker an initial consideration is the nature of the message
tra�c� Messages occur in two parts� a tag and the body of the message�
The tag must include� the size of the message to follow a type indicating
whether a message is a multicast or a request for processing and a message
number� The message number is intended to signal to the receiver which data
structure to position for the accommodation of the second part of the message�
It might also be used for other purposes� The body of the message should
include a function number as the �rst �eld of the message� but otherwise the
message record structure is undetermined� If a sequential version of a program
exists� it may involve excessive data movements to form messages into logical
message structures� The application programmer will need to balance utility
with complexity� The potential for a large number of di�erent messages is
a reason for con�ning oneself to a rigid message format� Unlike occam� the
�C� computer language does not o�er guidance in this respect� C�� has the



di�culty that there is not yet an ISO standard� Each work request message
is serviced by one worker�module function �Figure ��� For reasons explained
in Section ���� multicast messages generate no processing� In �C� it is possible
to use an array of function pointers to which the function number forms an
index� Though not entirely satisfactory� data and parameters are passed to the
function as globals� This means that each function can be referenced simply
by a number� From the �gure it will be seen that the worker module is divided
between a public interface and a private part into which di�erent functions can
be slotted� This makes it possible to extract the functions from sequential code
constructed with structured programming and place them into the slots�
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Figure �� The Worker Module

��� The Bu�er Design

While there has been considerable exploitation of parallel slackness �by means
of concurrent or pseudo�parallel processes� as a way of masking communica�
tion latency� rather less attention has been given to using bu�ers for the same
purpose ���	� Historically this situation arises because the XPRAM model ���	
was part of an attractive plan for a universal programmer�s model for par�
allel machines that could work on the two broad classes of MIMD� shared�
and distributed�memory machines� Providing internal concurrency may not
however be cost�free� If overlapped register windows are used� the cost of con�
text switching may become large as the register set is exhausted� If a process



is descheduled on one processor at a time when a process on another processor
wishes to communicate� multiple delays can occur ���	� Bu�ering on the other
hand was an important part of an early pipelined design where there are non�
deterministic 
ows between the pipeline stages ���	� There is a substantial
literature on queueing theory which can be applied selectively to particular
bu�ering problems ���	�
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Figure �� A Generic Bu�er

In the template design� in�going �Figure �� and out�going bu�ers service
each application process� Additionally� bu�ers are placed between the stages
of the pipeline� All bu�ers have the same generic form though they may di�er
in the number of bu�er slots� To avoid internal data movements a shared
address space is needed� The control of access contention is a standard problem
in concurrency ���	� On transputers� software semaphores can be utilised by
missing out any assembly language statement which might allow a context
switch by the �rmware� So that the bu�er slot size should remain transparent
to the message arrival size an initial bu�er slot size is set which can be expanded
by dynamic memory allocation on the arrival of too large a message� Separate
bu�er slots are kept for tags� otherwise there is a danger of the small slots
needed for tags being expanded to provide for larger messages� At present�
there is no means of reducing the bu�er size if that size should� in the general
case� turn out to be too large� Diagnostic software for memory usage �such
as Purify ���	 on sequential� possibly multi�threaded� machines� is not readily
available for parallel machines� though one would need to expand the basic
facilities of malloc debugging and array bound checking in order to check
inter�task memory usage interaction� To avoid the possibility of deadlock if
a series of multicast message were to arrive at asynchronous intervals� at least
one extra bu�er slot is provided over and above the number of messages sent



out at loading time� This method is a variant of an algorithm which is proven
in ���	� Trust in the implementation was established by sending multicasts at
randomly �with a uniform distribution� determined intervals against a backdrop
of continuous message tra�c� The number of multicasts at each distribution
time was also randomly determined�

��� The Multicast Sub�System
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Figure �� The Multicast Sub�System

In the expanded PPF methodology� multicasts can occur within each pro�
cessor farm� Broadcasts �such as for initial parameter passing� obviously occur
by inter�farmer communication� A multicast reduces message tra�c� though
in fact it breaks the paradigm of preventing worker to worker communication�
When a VCS is employed it becomes necessary to specify point�to�point links
and� if need be� set weightings to guide channel placement on the physical links
available� The use of a tree�topology makes this easy to do but since a farm
is not limited to a particular topology this is not generally the case� The tree
topology also makes routing of multicasts trivial to arrange� since the in�going
bu�er need �know� only how many ports it should send the multicast out to�



Other topologies may require the use of time�to�live �TTL� counters to avoid
endless circulation� If multicasting is to be asynchronous then the possibil�
ity exists of a multicast being blocked because of a circuit between farmer and
worker� In Section ��� an extra bu�er slot is prescribed� but two further restric�
tions are needed to guarantee deadlock avoidance� a worker process can only
act as a sink of multicast messages and each work request can be met by one
processed�work reply�
An alternative is barrier synchronization ���	� but this option is rejected because
of the overheads� Either all messages have to be absorbed by the farmer before
broadcasting� in which case a per�worker process message count is needed� or
a supervisory kernel is needed to wait for all workers to reach a barrier point�

��� The Monitoring Sub�System
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Figure �� The Monitoring Sub�System

In the template version in which all application processes are placed on
i���s� a monitor process synchronizes the clocks of all processes �Figure �� by
means of virtual channels� The monitor process can be placed on any processor�
which avoids overloading the processor directly linked to the host� Virtual links
are su�cient as the software global clock relies on the relative time di�erences
between local clocks and a centrally maintained clock in order to synchronize to
the central clock� Optionally at the start and de�nitely at the end� the monitor
process synchronizes with the master data�farmer� at which time trace collec�
tion occurs� If transputer�based farmers are employed� the monitor process can
be subsumed in the farmer� This is less satisfactory if the objective is to provide



transparent monitoring� as the communication primitives must directly make
the trace� PICL ���	 communication calls were mimicked for this eventuality�
In fact� the PICL trace �le format ���	 is also used as this enabled us to test
the post�mortem output on the ParaGraph visualizer ���	� The PICL format
includes a broadcast �eld but does not include multicast� which is understand�
able as the destinations are di�cult to specify if the record size is restricted
but which made it necessary to emulate multicasts by creating multiple message
records in the trace �le� Multicasts were stamped with the source and a code
not used elsewhere� Post�processing changed the multicast message to a set of
messages with the same timestamps but di�erent destinations �Paragraph does
not assume a monotonic clock�� Initialization and termination messages could
also be removed at post�processing time�
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Figure �� The Monitoring Layout

The interface program was enhanced with a trace recorder and synchronized
clock process �Figure ��� To substitute the new interface program the applica�
tion object code is booted onto the i��� network and in a second loading phase
the transputers are booted up� The interface program then restarts the i����
The local clocks are updated by periodic pulses from the monitor� An adjust�
ment algorithm is used to compensate for local clock drift� On receipt of a
command from the i��� application program� a trace record is also generated�
timestamped by a call to the local clock� All the processes mentioned run at
high�priority as it is important to service the i���� Where a trace is made on a



transputer�based process the clock should run at high priority so as to reduce
the interrupt latency� which for a single high priority process is �� processor
cycles ���s�� If need be an additional process is run at low priority ���	 with
the purpose of monitoring processor activity� The process simply counts each
time it is activated before descheduling itself� If the processor�monitor is called
relatively frequently the processor can be assumed to be relatively idle� Internal
monitoring of processes is not necessary if there is limited competition for the
processor�s time� If the interface program could determine the destination or
source of a message by its contents these arrangements would be enough� At
present� the communication primitive on the i��� is augmented to include these
details� �The Paramid shared�memory data structure can be changed usually
without disturbing the pre�compiled kernel routines��

The synchronization algorithm� discussed in detail in ���	� involves sending
three messages� Unlike a generalized tracing system� initiation and subsequent
maintenance of the clocks can be performed from a central point� the monitor
process� In order to reduce disruption to the pattern of messages during nor�
mal working� all worker processes are synchronized at approximately the same
time by a round�robin poll� The monitor computes the relative time di�er�
ence between an averaged central time and the local times� The local clocks
will receive the estimated di�erence at a later time� Between synchronization
points� local clocks are adjusted by a local estimate of the relative drift between
the clocks� Because crystal clocks are used linear drift is a good approximation
�for experimental evidence see ���� �	�� The interval between synchronization
pulses� before drift causes an error greater than the resolution of the intended
visualizer� is calculated by an heuristic adaptation of a method due to ���	� No
ordering errors were generated for the postcode or H���� applications when the
trace �les were fed through ParaGraph�s consistency checks though the runs
lasted for several minutes� The time taken up by the clock synchronization
messages was in the region of �� for an application with mean per�message
computation time of ���s for ���� messages� Larger mean computation times
�with the times forming a truncated Gaussian distribution� result in a lower
percentage cost�

��� Other Features

Correct termination of the farm is necessary both for the collection of outstand�
ing results and the gathering in of trace �les� It is anticipated also that the
farm may need to be recon�gured if the workload alters during the course of a
run� On termination� the data farmer employs a sink process� which is broadly
in line with the methods discussed in ���	� The �rst function in the worker
modules is reserved for termination�

Pipelines are developed in an incremental fashion by adding one farm at a
time� To allow a farm to be developed in isolation� source and sink processes
may be needed� These process stubs collect �les that can be used as a com�
parison with a correctly�running sequential version� If a feedback path exists
then this development cycle may not be possible� as was discovered with the



H���� encoder� However� for complex systems it is strongly recommended that
an incremental testing procedure is thought out before commencing�

The implementation of the guarded indeterminate communication operator
in the �rmware of the transputer favours those channels found �rst in order
of textual declaration� To provide �fair� selection of input channels� a chan�
nel shu�ing routine is provided� Experiment shows that for demand�based
farming� avoiding locking out worker requests does improve performance when
requests are closely synchronized�

� Analysing the Results from Two Real�Time
Systems

Our goal in providing visualization as a built�in feature was to diagnose the com�
munication behaviour for di�ering regimes of the parallel application� Accuracy
is not of primary concern for a top�down approach to performance tuning� but
it was apparent that an accurate trace could also serve to debug an application
�at a future date�� Presently� real�time debugging messages can be turned on
at the interface program�

Figure �� Postcode Diagnostics

��� A Postcode Recognition System

The postcode recognition application is intended to read automatically hand�
written British postcodes in time for the envelopes to be coded with the correct
postcode �using a phosphorescent dot code� as they reach the end of a mech�
anical conveyor belt� Diagnostic output from the tail end of the application
from the �nal dictionary search farmer �master �� is shown in Figure �� The
throughput easily meets the speci�cation even when a trace is included ������
postcodes�sec� with trace and ����� postcodes�sec� without�� There is no
direct comparison because due to the number of trace records generated the



run for a trace was limited to ��� postcodes� If one of the processes� in this
case the initial postcode image extractor� sends a relatively large number of
short messages it will �ll its trace bu�er up quickly� At visualization time the
display can be cluttered by messages from verbose processes� though this may
be solved by post�processing the trace �le�

Figure �� Animation of the Postcode Application

In the example chosen� there are three stages to the pipeline� The �rst pre�
processing farm has three workers �processors �� �� � �� and an initial image
extractor �processor ��� with three workers �processors �� �� � �� in the classi�
�cation stage and one for the dictionary stage �processor ���� The arrangement
is shown in a screen shot from ParaGraph�s animation display �Figure ��� Note
that� though the Paramid has eight modules� the three farmers are placed on
transputers� giving eleven processes in all� Less clear is Figure �� showing a
time�space display at full magni�cation� Paradoxically� because the particu�
lar partition of the pipeline kept the processors running with limited idle time
the display is cluttered� Had the bu�er processes also been instrumented the
impression would be cramped further� The trace does not show the operation
of system software� which in some cases might be helpful� As communica�
tion is taking place simultaneously at various stages of the pipeline there is a
good overlap� ParaGraph�s display is not proportionate to the time taken by
the application but is dependent on the display exigencies �as naturally some
applications would take too long to display�� The information from a display of



the type in the �gure gives a broad�brush impression but for some applications
tra�c�
ow statistics would need to be extracted from the trace as a basis for a
complementary analytic analysis�

Figure �� Time�Space Display of the Postcode Application
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��� The H���� Video Encoder

The H���� encoder� which is a standardized algorithm� is intended for real�time
encoding of video frame sequences for very low bit�rate videophones or video
conferencing ���	� The H���� encoder was tested using three physical farms�
However� because of the sequencing constraints imposed by the algorithm two of
the data�farmers were combined into one� leading to the physical arrangement
portrayed in Figure ��� Farm � has four workers� farm � has two workers and
the worker on farm � is actually the farmer�

Figure �� shows a portion of a trace for a typical run� The slope of the
lines indicates the direction of travel� Unfortunately� for short messages even
at highest magni�cation this is not apparent� as the �rst message to processor
� shows� This is a tag message� with the body of the message following later�
Running diagonally across the �gure to meet at processor � are the messages
from the �rst worker set� which farmer � cannot respond to until it has received
work back �in the guise of farmer �� from the second farm� The processor�
monitor revealed a ��� idle time� The three farm arrangement was later aban�
doned in favour of a simpler setup�

Figure ��� Time�Space Display for H����

Because ParaGraph was intended for a hypercube machine it gives the prin�
cipal topologies that can be embedded in a hypercube� The hypercube display
�Figure ��� is helpful in the respect that non�hypercube communication is obvi�
ous on a colour screen� Thus� one can see whether a port would succeed�
Though the range of displays and the display options o�ered by ParaGraph is
very convenient and cost�e�ective� a more focussed approach would be helpful�
ParaGraph is too unconstrained� o�ering the user limited guidance� which is a
point also made in ���	� From the PPF perspective� construction of multiple
tree topologies would be useful� showing message 
ow constrictions� If the dis�
plays were written in a language that was in the �rst instance interpreted �such
as Java ���	� then display prototyping would be quicker� A further advantage
is that the display formats could be user modi�able� without the extensive



parameterization of the X Window system�

Figure ��� Hypercube Display Screen Shot

� Conclusion

This paper has described the design of a farm template which includes soft�
ware instrumentation as an integral part� The template is at a prototype stage
and does not include measures to reduce the trace 
ow �such as semantic com�
pression� throttling of the 
ow or user indication of events of concern�� The
principles behind the design of the template have been tried out in two applic�
ations involving a pipelined design� Interim results are shown in the form of
trace displays� Data for the displays are collected by interface processes which
are largely transparent to the application source code� The template has been
constructed upon object�oriented design principles� which means that rather
than produce generalized software all software consists of a collection of self�
contained building blocks� The worker module with its controlled interface
and private functions is not unlike earlier approaches� for instance the Actors�
model ���	� It has been necessary to include a per�farm asynchronous multicast
facility� Trace visualization is modi�ed so as to add multicasts� The displays
can be used to show communication tra�c 
ow� The partition of the pipeline



is then adjusted accordingly� On the micro level the expected tra�c 
ow is
used to balance memory requirements for bu�ering� which is also an essential
part of the template design� A customized visualizer� capturing the features
of the PPF method� is a future intention� A template for the other two par�
allel decomposition paradigms also may be part of forthcoming work� Finally�
if �repeatable� runs can be achieved as part of a debugging cycle ���	 then an
integrated parallel debugger can share the timing data�
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